Spaces:
Running
Running
| from ..text_analysis.discourse_analysis import perform_discourse_analysis, compare_semantic_analysis | |
| import streamlit as st | |
| def process_discourse_input(user_input, lang_code, nlp_model, file_contents, t): | |
| if user_input.startswith('/analisis_discurso'): | |
| if file_contents is None or len(file_contents) != 2: | |
| return t['no_files_uploaded'], None | |
| text1, text2 = file_contents | |
| result = perform_discourse_analysis(text1, text2, nlp_model, lang_code) | |
| return t['discourse_analysis_completed'], (result['graph1'], result['graph2']) | |
| elif user_input.startswith('/comparar'): | |
| if file_contents is None or len(file_contents) != 2: | |
| return t['no_files_uploaded'], None | |
| text1, text2 = file_contents | |
| comparison_result = compare_semantic_analysis(text1, text2, nlp_model, lang_code) | |
| return t['comparison_completed'], comparison_result | |
| else: | |
| # Procesar otros tipos de inputs del usuario | |
| chatbot = st.session_state.discourse_chatbot | |
| response = chatbot.generate_response(user_input, lang_code, context=str(file_contents)) | |
| return response, None |