Spaces:
Sleeping
Sleeping
Update modules/text_analysis/discourse_analysis.py
Browse files
modules/text_analysis/discourse_analysis.py
CHANGED
|
@@ -1,72 +1,67 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import spacy
|
| 3 |
-
import networkx as nx
|
| 4 |
-
import matplotlib.pyplot as plt
|
| 5 |
-
import pandas as pd
|
| 6 |
-
import numpy as np
|
| 7 |
-
from .semantic_analysis import (
|
| 8 |
-
create_concept_graph,
|
| 9 |
-
visualize_concept_graph,
|
| 10 |
-
identify_key_concepts,
|
| 11 |
-
POS_COLORS,
|
| 12 |
-
POS_TRANSLATIONS,
|
| 13 |
-
ENTITY_LABELS
|
| 14 |
-
)
|
| 15 |
-
|
| 16 |
-
def compare_semantic_analysis(text1, text2, nlp, lang):
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
with col2:
|
| 69 |
-
with st.expander(t['doc2_title'], expanded=True):
|
| 70 |
-
st.pyplot(analysis_result['graph2'])
|
| 71 |
-
st.subheader(t['key_concepts'])
|
| 72 |
-
st.table(analysis_result['table2'])
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import spacy
|
| 3 |
+
import networkx as nx
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
+
from .semantic_analysis import (
|
| 8 |
+
create_concept_graph,
|
| 9 |
+
visualize_concept_graph,
|
| 10 |
+
identify_key_concepts,
|
| 11 |
+
POS_COLORS,
|
| 12 |
+
POS_TRANSLATIONS,
|
| 13 |
+
ENTITY_LABELS
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
def compare_semantic_analysis(text1, text2, nlp, lang):
|
| 17 |
+
"""
|
| 18 |
+
Realiza el análisis semántico comparativo entre dos textos
|
| 19 |
+
"""
|
| 20 |
+
doc1 = nlp(text1)
|
| 21 |
+
doc2 = nlp(text2)
|
| 22 |
+
|
| 23 |
+
# Identificar conceptos clave para ambos documentos
|
| 24 |
+
key_concepts1 = identify_key_concepts(doc1)
|
| 25 |
+
key_concepts2 = identify_key_concepts(doc2)
|
| 26 |
+
|
| 27 |
+
# Crear grafos de conceptos para ambos documentos
|
| 28 |
+
G1 = create_concept_graph(doc1, key_concepts1)
|
| 29 |
+
G2 = create_concept_graph(doc2, key_concepts2)
|
| 30 |
+
|
| 31 |
+
# Visualizar los grafos de conceptos
|
| 32 |
+
fig1 = visualize_concept_graph(G1, lang)
|
| 33 |
+
fig2 = visualize_concept_graph(G2, lang)
|
| 34 |
+
|
| 35 |
+
# Remover los títulos superpuestos
|
| 36 |
+
fig1.suptitle("")
|
| 37 |
+
fig2.suptitle("")
|
| 38 |
+
|
| 39 |
+
return fig1, fig2, key_concepts1, key_concepts2
|
| 40 |
+
|
| 41 |
+
def create_concept_table(key_concepts):
|
| 42 |
+
"""
|
| 43 |
+
Crea una tabla de conceptos clave con sus frecuencias
|
| 44 |
+
"""
|
| 45 |
+
df = pd.DataFrame(key_concepts, columns=['Concepto', 'Frecuencia'])
|
| 46 |
+
df['Frecuencia'] = df['Frecuencia'].round(2)
|
| 47 |
+
return df
|
| 48 |
+
|
| 49 |
+
def perform_discourse_analysis(text1, text2, nlp, lang):
|
| 50 |
+
"""
|
| 51 |
+
Realiza el análisis completo del discurso
|
| 52 |
+
"""
|
| 53 |
+
graph1, graph2, key_concepts1, key_concepts2 = compare_semantic_analysis(text1, text2, nlp, lang)
|
| 54 |
+
|
| 55 |
+
# Crear tablas de conceptos clave
|
| 56 |
+
table1 = create_concept_table(key_concepts1)
|
| 57 |
+
table2 = create_concept_table(key_concepts2)
|
| 58 |
+
|
| 59 |
+
return {
|
| 60 |
+
'graph1': graph1,
|
| 61 |
+
'graph2': graph2,
|
| 62 |
+
'key_concepts1': key_concepts1,
|
| 63 |
+
'key_concepts2': key_concepts2,
|
| 64 |
+
'table1': table1,
|
| 65 |
+
'table2': table2,
|
| 66 |
+
'success': True
|
| 67 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|