Spaces:
Sleeping
Sleeping
Update modules/discourse/discourse_interface.py
Browse files
modules/discourse/discourse_interface.py
CHANGED
|
@@ -10,16 +10,16 @@ from ..database.chat_mongo_db import store_chat_history
|
|
| 10 |
from ..database.discourse_mongo_db import store_student_discourse_result
|
| 11 |
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
-
#############################################################################################
|
| 14 |
|
| 15 |
def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
| 16 |
"""
|
| 17 |
Interfaz para el análisis del discurso
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"""
|
| 19 |
try:
|
| 20 |
-
# Activar estado
|
| 21 |
-
st.session_state.tab_states['discourse_active'] = True
|
| 22 |
-
|
| 23 |
# 1. Inicializar estado si no existe
|
| 24 |
if 'discourse_state' not in st.session_state:
|
| 25 |
st.session_state.discourse_state = {
|
|
@@ -67,9 +67,11 @@ def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
|
| 67 |
if analyze_button and uploaded_file1 and uploaded_file2:
|
| 68 |
try:
|
| 69 |
with st.spinner(discourse_t.get('processing', 'Procesando análisis...')):
|
|
|
|
| 70 |
text1 = uploaded_file1.getvalue().decode('utf-8')
|
| 71 |
text2 = uploaded_file2.getvalue().decode('utf-8')
|
| 72 |
|
|
|
|
| 73 |
result = perform_discourse_analysis(
|
| 74 |
text1,
|
| 75 |
text2,
|
|
@@ -78,6 +80,7 @@ def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
|
| 78 |
)
|
| 79 |
|
| 80 |
if result['success']:
|
|
|
|
| 81 |
st.session_state.discourse_result = result
|
| 82 |
st.session_state.discourse_state['analysis_count'] += 1
|
| 83 |
st.session_state.discourse_state['current_files'] = (
|
|
@@ -85,6 +88,7 @@ def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
|
| 85 |
uploaded_file2.name
|
| 86 |
)
|
| 87 |
|
|
|
|
| 88 |
if store_student_discourse_result(
|
| 89 |
st.session_state.username,
|
| 90 |
text1,
|
|
@@ -92,6 +96,8 @@ def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
|
| 92 |
result
|
| 93 |
):
|
| 94 |
st.success(discourse_t.get('success_message', 'Análisis guardado correctamente'))
|
|
|
|
|
|
|
| 95 |
display_discourse_results(result, lang_code, discourse_t)
|
| 96 |
else:
|
| 97 |
st.error(discourse_t.get('error_message', 'Error al guardar el análisis'))
|
|
@@ -99,7 +105,6 @@ def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
|
| 99 |
st.error(discourse_t.get('analysis_error', 'Error en el análisis'))
|
| 100 |
|
| 101 |
except Exception as e:
|
| 102 |
-
st.session_state.tab_states['discourse_active'] = False
|
| 103 |
logger.error(f"Error en análisis del discurso: {str(e)}")
|
| 104 |
st.error(discourse_t.get('error_processing', f'Error procesando archivos: {str(e)}'))
|
| 105 |
|
|
@@ -117,69 +122,17 @@ def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
|
| 117 |
)
|
| 118 |
|
| 119 |
except Exception as e:
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
st.error(discourse_t.get('general_error', "Se produjo un error. Por favor, intente de nuevo."))
|
| 123 |
-
|
| 124 |
-
##########################################################################################
|
| 125 |
|
| 126 |
def display_discourse_results(result, lang_code, discourse_t):
|
| 127 |
"""
|
| 128 |
-
Muestra los resultados del análisis del discurso
|
| 129 |
-
y botones de control consistentes
|
| 130 |
"""
|
| 131 |
if not result.get('success'):
|
| 132 |
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles'))
|
| 133 |
return
|
| 134 |
|
| 135 |
-
# Estilo CSS unificado
|
| 136 |
-
st.markdown("""
|
| 137 |
-
<style>
|
| 138 |
-
.concepts-container {
|
| 139 |
-
display: flex;
|
| 140 |
-
flex-wrap: nowrap;
|
| 141 |
-
gap: 8px;
|
| 142 |
-
padding: 12px;
|
| 143 |
-
background-color: #f8f9fa;
|
| 144 |
-
border-radius: 8px 8px 0 0;
|
| 145 |
-
overflow-x: auto;
|
| 146 |
-
margin-bottom: 0;
|
| 147 |
-
white-space: nowrap;
|
| 148 |
-
}
|
| 149 |
-
.concept-item {
|
| 150 |
-
background-color: white;
|
| 151 |
-
border-radius: 4px;
|
| 152 |
-
padding: 6px 10px;
|
| 153 |
-
display: inline-flex;
|
| 154 |
-
align-items: center;
|
| 155 |
-
gap: 4px;
|
| 156 |
-
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
| 157 |
-
flex-shrink: 0;
|
| 158 |
-
}
|
| 159 |
-
.concept-name {
|
| 160 |
-
font-weight: 500;
|
| 161 |
-
color: #1f2937;
|
| 162 |
-
font-size: 0.85em;
|
| 163 |
-
}
|
| 164 |
-
.concept-freq {
|
| 165 |
-
color: #6b7280;
|
| 166 |
-
font-size: 0.75em;
|
| 167 |
-
}
|
| 168 |
-
.graph-container {
|
| 169 |
-
background-color: white;
|
| 170 |
-
border-radius: 0 0 8px 8px;
|
| 171 |
-
padding: 20px;
|
| 172 |
-
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 173 |
-
margin-top: 0;
|
| 174 |
-
}
|
| 175 |
-
.controls-container {
|
| 176 |
-
display: flex;
|
| 177 |
-
gap: 10px;
|
| 178 |
-
margin-top: 10px;
|
| 179 |
-
}
|
| 180 |
-
</style>
|
| 181 |
-
""", unsafe_allow_html=True)
|
| 182 |
-
|
| 183 |
col1, col2 = st.columns(2)
|
| 184 |
|
| 185 |
# Documento 1
|
|
@@ -187,42 +140,12 @@ def display_discourse_results(result, lang_code, discourse_t):
|
|
| 187 |
with st.expander(discourse_t.get('doc1_title', 'Documento 1'), expanded=True):
|
| 188 |
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
| 189 |
if 'key_concepts1' in result:
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
| 194 |
-
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
| 195 |
-
for concept, freq in result['key_concepts1']
|
| 196 |
-
])}
|
| 197 |
-
</div>
|
| 198 |
-
"""
|
| 199 |
-
st.markdown(concepts_html, unsafe_allow_html=True)
|
| 200 |
|
| 201 |
if 'graph1' in result:
|
| 202 |
-
|
| 203 |
-
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
| 204 |
-
st.pyplot(result['graph1'])
|
| 205 |
-
|
| 206 |
-
# Añadir botones de control para el grafo 1
|
| 207 |
-
button_col1, spacer_col1 = st.columns([1,4])
|
| 208 |
-
with button_col1:
|
| 209 |
-
st.download_button(
|
| 210 |
-
label="📥 " + discourse_t.get('download_graph', "Download"),
|
| 211 |
-
data=result['graph1_bytes'] if 'graph1_bytes' in result else None,
|
| 212 |
-
file_name="discourse_graph1.png",
|
| 213 |
-
mime="image/png",
|
| 214 |
-
use_container_width=True
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
with st.expander("📊 " + discourse_t.get('graph_help', "Graph Interpretation")):
|
| 218 |
-
st.markdown("""
|
| 219 |
-
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
| 220 |
-
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
| 221 |
-
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
| 222 |
-
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
| 223 |
-
""")
|
| 224 |
-
|
| 225 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 226 |
else:
|
| 227 |
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
| 228 |
else:
|
|
@@ -233,42 +156,12 @@ def display_discourse_results(result, lang_code, discourse_t):
|
|
| 233 |
with st.expander(discourse_t.get('doc2_title', 'Documento 2'), expanded=True):
|
| 234 |
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
| 235 |
if 'key_concepts2' in result:
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
f'<div class="concept-item"><span class="concept-name">{concept}</span>'
|
| 240 |
-
f'<span class="concept-freq">({freq:.2f})</span></div>'
|
| 241 |
-
for concept, freq in result['key_concepts2']
|
| 242 |
-
])}
|
| 243 |
-
</div>
|
| 244 |
-
"""
|
| 245 |
-
st.markdown(concepts_html, unsafe_allow_html=True)
|
| 246 |
|
| 247 |
if 'graph2' in result:
|
| 248 |
-
|
| 249 |
-
st.markdown('<div class="graph-container">', unsafe_allow_html=True)
|
| 250 |
-
st.pyplot(result['graph2'])
|
| 251 |
-
|
| 252 |
-
# Añadir botones de control para el grafo 2
|
| 253 |
-
button_col2, spacer_col2 = st.columns([1,4])
|
| 254 |
-
with button_col2:
|
| 255 |
-
st.download_button(
|
| 256 |
-
label="📥 " + discourse_t.get('download_graph', "Download"),
|
| 257 |
-
data=result['graph2_bytes'] if 'graph2_bytes' in result else None,
|
| 258 |
-
file_name="discourse_graph2.png",
|
| 259 |
-
mime="image/png",
|
| 260 |
-
use_container_width=True
|
| 261 |
-
)
|
| 262 |
-
|
| 263 |
-
with st.expander("📊 " + discourse_t.get('graph_help', "Graph Interpretation")):
|
| 264 |
-
st.markdown("""
|
| 265 |
-
- 🔀 Las flechas indican la dirección de la relación entre conceptos
|
| 266 |
-
- 🎨 Los colores más intensos indican conceptos más centrales en el texto
|
| 267 |
-
- ⭕ El tamaño de los nodos representa la frecuencia del concepto
|
| 268 |
-
- ↔️ El grosor de las líneas indica la fuerza de la conexión
|
| 269 |
-
""")
|
| 270 |
-
|
| 271 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 272 |
else:
|
| 273 |
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
| 274 |
else:
|
|
@@ -276,4 +169,4 @@ def display_discourse_results(result, lang_code, discourse_t):
|
|
| 276 |
|
| 277 |
# Nota informativa sobre la comparación
|
| 278 |
st.info(discourse_t.get('comparison_note',
|
| 279 |
-
'La funcionalidad de comparación detallada estará disponible en una próxima actualización.'))
|
|
|
|
| 10 |
from ..database.discourse_mongo_db import store_student_discourse_result
|
| 11 |
|
| 12 |
logger = logging.getLogger(__name__)
|
|
|
|
| 13 |
|
| 14 |
def display_discourse_interface(lang_code, nlp_models, discourse_t):
|
| 15 |
"""
|
| 16 |
Interfaz para el análisis del discurso
|
| 17 |
+
Args:
|
| 18 |
+
lang_code: Código del idioma actual
|
| 19 |
+
nlp_models: Modelos de spaCy cargados
|
| 20 |
+
discourse_t: Diccionario de traducciones
|
| 21 |
"""
|
| 22 |
try:
|
|
|
|
|
|
|
|
|
|
| 23 |
# 1. Inicializar estado si no existe
|
| 24 |
if 'discourse_state' not in st.session_state:
|
| 25 |
st.session_state.discourse_state = {
|
|
|
|
| 67 |
if analyze_button and uploaded_file1 and uploaded_file2:
|
| 68 |
try:
|
| 69 |
with st.spinner(discourse_t.get('processing', 'Procesando análisis...')):
|
| 70 |
+
# Leer contenido de archivos
|
| 71 |
text1 = uploaded_file1.getvalue().decode('utf-8')
|
| 72 |
text2 = uploaded_file2.getvalue().decode('utf-8')
|
| 73 |
|
| 74 |
+
# Realizar análisis
|
| 75 |
result = perform_discourse_analysis(
|
| 76 |
text1,
|
| 77 |
text2,
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
if result['success']:
|
| 83 |
+
# Guardar estado
|
| 84 |
st.session_state.discourse_result = result
|
| 85 |
st.session_state.discourse_state['analysis_count'] += 1
|
| 86 |
st.session_state.discourse_state['current_files'] = (
|
|
|
|
| 88 |
uploaded_file2.name
|
| 89 |
)
|
| 90 |
|
| 91 |
+
# Guardar en base de datos
|
| 92 |
if store_student_discourse_result(
|
| 93 |
st.session_state.username,
|
| 94 |
text1,
|
|
|
|
| 96 |
result
|
| 97 |
):
|
| 98 |
st.success(discourse_t.get('success_message', 'Análisis guardado correctamente'))
|
| 99 |
+
|
| 100 |
+
# Mostrar resultados
|
| 101 |
display_discourse_results(result, lang_code, discourse_t)
|
| 102 |
else:
|
| 103 |
st.error(discourse_t.get('error_message', 'Error al guardar el análisis'))
|
|
|
|
| 105 |
st.error(discourse_t.get('analysis_error', 'Error en el análisis'))
|
| 106 |
|
| 107 |
except Exception as e:
|
|
|
|
| 108 |
logger.error(f"Error en análisis del discurso: {str(e)}")
|
| 109 |
st.error(discourse_t.get('error_processing', f'Error procesando archivos: {str(e)}'))
|
| 110 |
|
|
|
|
| 122 |
)
|
| 123 |
|
| 124 |
except Exception as e:
|
| 125 |
+
logger.error(f"Error general en interfaz del discurso: {str(e)}")
|
| 126 |
+
st.error(discourse_t.get('general_error', 'Se produjo un error. Por favor, intente de nuevo.'))
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
def display_discourse_results(result, lang_code, discourse_t):
|
| 129 |
"""
|
| 130 |
+
Muestra los resultados del análisis del discurso
|
|
|
|
| 131 |
"""
|
| 132 |
if not result.get('success'):
|
| 133 |
st.warning(discourse_t.get('no_results', 'No hay resultados disponibles'))
|
| 134 |
return
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
col1, col2 = st.columns(2)
|
| 137 |
|
| 138 |
# Documento 1
|
|
|
|
| 140 |
with st.expander(discourse_t.get('doc1_title', 'Documento 1'), expanded=True):
|
| 141 |
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
| 142 |
if 'key_concepts1' in result:
|
| 143 |
+
df1 = pd.DataFrame(result['key_concepts1'], columns=['Concepto', 'Frecuencia'])
|
| 144 |
+
df1['Frecuencia'] = df1['Frecuencia'].round(2)
|
| 145 |
+
st.table(df1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
if 'graph1' in result:
|
| 148 |
+
st.pyplot(result['graph1'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
else:
|
| 150 |
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
| 151 |
else:
|
|
|
|
| 156 |
with st.expander(discourse_t.get('doc2_title', 'Documento 2'), expanded=True):
|
| 157 |
st.subheader(discourse_t.get('key_concepts', 'Conceptos Clave'))
|
| 158 |
if 'key_concepts2' in result:
|
| 159 |
+
df2 = pd.DataFrame(result['key_concepts2'], columns=['Concepto', 'Frecuencia'])
|
| 160 |
+
df2['Frecuencia'] = df2['Frecuencia'].round(2)
|
| 161 |
+
st.table(df2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
if 'graph2' in result:
|
| 164 |
+
st.pyplot(result['graph2'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
else:
|
| 166 |
st.warning(discourse_t.get('graph_not_available', 'Gráfico no disponible'))
|
| 167 |
else:
|
|
|
|
| 169 |
|
| 170 |
# Nota informativa sobre la comparación
|
| 171 |
st.info(discourse_t.get('comparison_note',
|
| 172 |
+
'La funcionalidad de comparación detallada estará disponible en una próxima actualización.'))
|