Spaces:
Sleeping
Sleeping
Update modules/studentact/current_situation_interface.py
Browse files
modules/studentact/current_situation_interface.py
CHANGED
|
@@ -90,7 +90,7 @@ ANALYSIS_DIMENSION_MAPPING = {
|
|
| 90 |
}
|
| 91 |
}
|
| 92 |
|
| 93 |
-
####################################
|
| 94 |
|
| 95 |
def display_current_situation_interface(lang_code, nlp_models, t):
|
| 96 |
"""
|
|
@@ -109,295 +109,93 @@ def display_current_situation_interface(lang_code, nlp_models, t):
|
|
| 109 |
st.session_state.current_metrics = None
|
| 110 |
|
| 111 |
try:
|
| 112 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
with st.container():
|
| 114 |
-
|
| 115 |
-
text_base_col, results_base_col, text_iter_col, results_iter_col = st.columns(4)
|
| 116 |
|
| 117 |
# Columna 1: Texto Base
|
| 118 |
with text_base_col:
|
| 119 |
st.markdown("### Texto Base")
|
| 120 |
-
|
| 121 |
-
"
|
| 122 |
height=400,
|
| 123 |
-
key="
|
| 124 |
-
value=st.session_state.
|
| 125 |
-
help="Este texto servirá como línea base"
|
| 126 |
)
|
| 127 |
|
| 128 |
-
|
| 129 |
-
"
|
| 130 |
-
|
| 131 |
-
disabled=not text_input.strip(),
|
| 132 |
-
use_container_width=True
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
# Columna 2: Resultados Base
|
| 136 |
-
with results_base_col:
|
| 137 |
-
if baseline_button and text_input:
|
| 138 |
-
with st.spinner("Analizando línea base..."):
|
| 139 |
-
doc = nlp_models[lang_code](text_input)
|
| 140 |
metrics = analyze_text_dimensions(doc)
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
# Columna 3: Texto Iteración
|
| 145 |
with text_iter_col:
|
| 146 |
-
st.markdown("###
|
| 147 |
-
|
| 148 |
-
"Nueva versión
|
| 149 |
height=400,
|
| 150 |
-
key="
|
| 151 |
-
|
|
|
|
| 152 |
)
|
| 153 |
|
| 154 |
-
|
| 155 |
"Analizar Iteración",
|
| 156 |
type="primary",
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
# Columna 4: Resultados Iteración
|
| 162 |
-
with results_iter_col:
|
| 163 |
-
if iterate_button and iteration_text:
|
| 164 |
with st.spinner("Analizando iteración..."):
|
| 165 |
-
doc = nlp_models[lang_code](
|
| 166 |
metrics = analyze_text_dimensions(doc)
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
)
|
| 178 |
-
|
| 179 |
-
except Exception as e:
|
| 180 |
-
logger.error(f"Error en interfaz principal: {str(e)}")
|
| 181 |
-
st.error("Ocurrió un error al cargar la interfaz")
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
###################################
|
| 185 |
-
|
| 186 |
-
def display_metrics_column(metrics, title):
|
| 187 |
-
"""Muestra columna de métricas con formato consistente"""
|
| 188 |
-
# st.markdown(f"#### Métricas {title}")
|
| 189 |
-
|
| 190 |
-
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']:
|
| 191 |
-
value = metrics[dimension]['normalized_score']
|
| 192 |
-
if value < 0.6:
|
| 193 |
-
status = "⚠️ Por mejorar"
|
| 194 |
-
color = "inverse"
|
| 195 |
-
elif value < 0.8:
|
| 196 |
-
status = "📈 Aceptable"
|
| 197 |
-
color = "off"
|
| 198 |
-
else:
|
| 199 |
-
status = "✅ Óptimo"
|
| 200 |
-
color = "normal"
|
| 201 |
-
|
| 202 |
-
st.metric(
|
| 203 |
-
dimension.title(),
|
| 204 |
-
f"{value:.2f}",
|
| 205 |
-
status,
|
| 206 |
-
delta_color=color
|
| 207 |
-
)
|
| 208 |
-
|
| 209 |
-
###################################
|
| 210 |
-
|
| 211 |
-
def display_baseline_interface(lang_code, nlp_models, t):
|
| 212 |
-
"""Interfaz para establecer línea base"""
|
| 213 |
-
try:
|
| 214 |
-
st.markdown("### Establecer Línea Base")
|
| 215 |
-
|
| 216 |
-
text_input = st.text_area(
|
| 217 |
-
"Texto para línea base",
|
| 218 |
-
height=300,
|
| 219 |
-
help="Este texto servirá como punto de referencia para medir tu progreso"
|
| 220 |
-
)
|
| 221 |
-
|
| 222 |
-
if st.button("Establecer como línea base", type="primary"):
|
| 223 |
-
with st.spinner("Analizando texto base..."):
|
| 224 |
-
# Analizar el texto
|
| 225 |
-
doc = nlp_models[lang_code](text_input)
|
| 226 |
-
metrics = analyze_text_dimensions(doc)
|
| 227 |
-
|
| 228 |
-
# Guardar como línea base
|
| 229 |
-
success = store_writing_baseline(
|
| 230 |
-
username=st.session_state.username,
|
| 231 |
-
metrics=metrics,
|
| 232 |
-
text=text_input
|
| 233 |
-
)
|
| 234 |
-
|
| 235 |
-
if success:
|
| 236 |
-
st.success("Línea base establecida con éxito")
|
| 237 |
-
# Mostrar el gráfico radar inicial
|
| 238 |
-
metrics_config = prepare_metrics_config(metrics)
|
| 239 |
-
display_radar_chart(metrics_config, TEXT_TYPES['student_essay']['thresholds'])
|
| 240 |
-
else:
|
| 241 |
-
st.error("Error al guardar la línea base")
|
| 242 |
-
|
| 243 |
-
except Exception as e:
|
| 244 |
-
logger.error(f"Error en interfaz de línea base: {str(e)}")
|
| 245 |
-
st.error("Error al establecer línea base")
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
###################################
|
| 250 |
-
|
| 251 |
-
def display_comparison_interface(lang_code, nlp_models, t):
|
| 252 |
-
"""Interfaz para comparar progreso"""
|
| 253 |
-
try:
|
| 254 |
-
# Obtener línea base
|
| 255 |
-
baseline = get_writing_baseline(st.session_state.username)
|
| 256 |
-
|
| 257 |
-
if not baseline:
|
| 258 |
-
st.warning("Primero debes establecer una línea base")
|
| 259 |
-
return
|
| 260 |
-
|
| 261 |
-
# Crear dos columnas
|
| 262 |
-
col1, col2 = st.columns(2)
|
| 263 |
|
| 264 |
-
with col1:
|
| 265 |
-
st.markdown("### Línea Base")
|
| 266 |
-
st.text_area(
|
| 267 |
-
"Texto original",
|
| 268 |
-
value=baseline['text'],
|
| 269 |
-
disabled=True,
|
| 270 |
-
height=200
|
| 271 |
-
)
|
| 272 |
-
|
| 273 |
-
with col2:
|
| 274 |
-
st.markdown("### Nuevo Texto")
|
| 275 |
-
current_text = st.text_area(
|
| 276 |
-
"Ingresa el nuevo texto a comparar",
|
| 277 |
-
height=200
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
if st.button("Analizar progreso", type="primary"):
|
| 281 |
-
with st.spinner("Analizando progreso..."):
|
| 282 |
-
# Analizar texto actual
|
| 283 |
-
doc = nlp_models[lang_code](current_text)
|
| 284 |
-
current_metrics = analyze_text_dimensions(doc)
|
| 285 |
-
|
| 286 |
-
# Mostrar comparación
|
| 287 |
-
display_comparison_results(
|
| 288 |
-
baseline_metrics=baseline['metrics'],
|
| 289 |
-
current_metrics=current_metrics
|
| 290 |
-
)
|
| 291 |
-
|
| 292 |
-
# Opción para guardar progreso
|
| 293 |
-
if st.button("Guardar este progreso"):
|
| 294 |
-
success = store_writing_progress(
|
| 295 |
-
username=st.session_state.username,
|
| 296 |
-
metrics=current_metrics,
|
| 297 |
-
text=current_text
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
if success:
|
| 301 |
-
st.success("Progreso guardado exitosamente")
|
| 302 |
-
else:
|
| 303 |
-
st.error("Error al guardar el progreso")
|
| 304 |
-
|
| 305 |
except Exception as e:
|
| 306 |
-
logger.error(f"Error en interfaz
|
| 307 |
-
st.error("Error al
|
| 308 |
-
|
| 309 |
-
###################################
|
| 310 |
-
|
| 311 |
-
def display_comparison_results(baseline_metrics, current_metrics):
|
| 312 |
-
"""Muestra comparación entre línea base y métricas actuales"""
|
| 313 |
-
|
| 314 |
-
# Crear columnas para métricas y gráfico
|
| 315 |
-
metrics_col, graph_col = st.columns([1, 1.5])
|
| 316 |
-
|
| 317 |
-
with metrics_col:
|
| 318 |
-
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']:
|
| 319 |
-
baseline = baseline_metrics[dimension]['normalized_score']
|
| 320 |
-
current = current_metrics[dimension]['normalized_score']
|
| 321 |
-
delta = current - baseline
|
| 322 |
-
|
| 323 |
-
st.metric(
|
| 324 |
-
dimension.title(),
|
| 325 |
-
f"{current:.2f}",
|
| 326 |
-
f"{delta:+.2f}",
|
| 327 |
-
delta_color="normal" if delta >= 0 else "inverse"
|
| 328 |
-
)
|
| 329 |
-
|
| 330 |
-
# Sugerir herramientas de mejora
|
| 331 |
-
if delta < 0:
|
| 332 |
-
suggest_improvement_tools(dimension)
|
| 333 |
-
|
| 334 |
-
with graph_col:
|
| 335 |
-
display_radar_chart_comparison(
|
| 336 |
-
baseline_metrics,
|
| 337 |
-
current_metrics
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
###################################
|
| 341 |
-
def suggest_improvement_tools(dimension):
|
| 342 |
-
"""Sugiere herramientas basadas en la dimensión"""
|
| 343 |
-
suggestions = []
|
| 344 |
-
for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items():
|
| 345 |
-
if dimension in mapping['primary']:
|
| 346 |
-
suggestions.extend(mapping['tools'])
|
| 347 |
-
|
| 348 |
-
st.info(f"Herramientas sugeridas para mejorar {dimension}:")
|
| 349 |
-
for tool in suggestions:
|
| 350 |
-
st.write(f"- {tool}")
|
| 351 |
-
|
| 352 |
-
###################################
|
| 353 |
-
|
| 354 |
-
def prepare_metrics_config(metrics, text_type='student_essay'):
|
| 355 |
-
"""
|
| 356 |
-
Prepara la configuración de métricas en el mismo formato que display_results.
|
| 357 |
-
Args:
|
| 358 |
-
metrics: Diccionario con las métricas analizadas
|
| 359 |
-
text_type: Tipo de texto para los umbrales
|
| 360 |
-
Returns:
|
| 361 |
-
list: Lista de configuraciones de métricas
|
| 362 |
-
"""
|
| 363 |
-
# Obtener umbrales según el tipo de texto
|
| 364 |
-
thresholds = TEXT_TYPES[text_type]['thresholds']
|
| 365 |
-
|
| 366 |
-
# Usar la misma estructura que en display_results
|
| 367 |
-
return [
|
| 368 |
-
{
|
| 369 |
-
'label': "Vocabulario",
|
| 370 |
-
'key': 'vocabulary',
|
| 371 |
-
'value': metrics['vocabulary']['normalized_score'],
|
| 372 |
-
'help': "Riqueza y variedad del vocabulario",
|
| 373 |
-
'thresholds': thresholds['vocabulary']
|
| 374 |
-
},
|
| 375 |
-
{
|
| 376 |
-
'label': "Estructura",
|
| 377 |
-
'key': 'structure',
|
| 378 |
-
'value': metrics['structure']['normalized_score'],
|
| 379 |
-
'help': "Organización y complejidad de oraciones",
|
| 380 |
-
'thresholds': thresholds['structure']
|
| 381 |
-
},
|
| 382 |
-
{
|
| 383 |
-
'label': "Cohesión",
|
| 384 |
-
'key': 'cohesion',
|
| 385 |
-
'value': metrics['cohesion']['normalized_score'],
|
| 386 |
-
'help': "Conexión y fluidez entre ideas",
|
| 387 |
-
'thresholds': thresholds['cohesion']
|
| 388 |
-
},
|
| 389 |
-
{
|
| 390 |
-
'label': "Claridad",
|
| 391 |
-
'key': 'clarity',
|
| 392 |
-
'value': metrics['clarity']['normalized_score'],
|
| 393 |
-
'help': "Facilidad de comprensión del texto",
|
| 394 |
-
'thresholds': thresholds['clarity']
|
| 395 |
-
}
|
| 396 |
-
]
|
| 397 |
|
| 398 |
-
|
| 399 |
|
| 400 |
-
def
|
| 401 |
"""
|
| 402 |
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
| 403 |
"""
|
|
@@ -474,7 +272,34 @@ def display_results(metrics, text_type=None):
|
|
| 474 |
logger.error(f"Error mostrando resultados: {str(e)}")
|
| 475 |
st.error("Error al mostrar los resultados")
|
| 476 |
|
| 477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
|
| 479 |
def display_radar_chart(metrics_config, thresholds, baseline_metrics=None):
|
| 480 |
"""
|
|
@@ -573,4 +398,59 @@ def display_radar_chart(metrics_config, thresholds, baseline_metrics=None):
|
|
| 573 |
logger.error(f"Error mostrando gráfico radar: {str(e)}")
|
| 574 |
st.error("Error al mostrar el gráfico")
|
| 575 |
|
| 576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
}
|
| 91 |
}
|
| 92 |
|
| 93 |
+
#Función principal ####################################
|
| 94 |
|
| 95 |
def display_current_situation_interface(lang_code, nlp_models, t):
|
| 96 |
"""
|
|
|
|
| 109 |
st.session_state.current_metrics = None
|
| 110 |
|
| 111 |
try:
|
| 112 |
+
# 1. Selector de tipo de texto
|
| 113 |
+
text_type = st.selectbox(
|
| 114 |
+
"Tipo de texto",
|
| 115 |
+
options=list(TEXT_TYPES.keys()),
|
| 116 |
+
format_func=lambda x: TEXT_TYPES[x]['name'],
|
| 117 |
+
help="Selecciona el tipo de texto para ajustar los criterios de evaluación"
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Guardar en estado
|
| 121 |
+
st.session_state.current_text_type = text_type
|
| 122 |
+
|
| 123 |
+
# 2. Container principal con 4 columnas
|
| 124 |
with st.container():
|
| 125 |
+
text_base_col, metrics_base_col, text_iter_col, metrics_iter_col = st.columns([1,1,1,1])
|
|
|
|
| 126 |
|
| 127 |
# Columna 1: Texto Base
|
| 128 |
with text_base_col:
|
| 129 |
st.markdown("### Texto Base")
|
| 130 |
+
text_base = st.text_area(
|
| 131 |
+
"Texto original",
|
| 132 |
height=400,
|
| 133 |
+
key="text_base",
|
| 134 |
+
value=st.session_state.get('base_text', ''),
|
|
|
|
| 135 |
)
|
| 136 |
|
| 137 |
+
if st.button("Analizar Base", type="primary", use_container_width=True):
|
| 138 |
+
with st.spinner("Analizando texto base..."):
|
| 139 |
+
doc = nlp_models[lang_code](text_base)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
metrics = analyze_text_dimensions(doc)
|
| 141 |
+
|
| 142 |
+
# Guardar en estado
|
| 143 |
+
st.session_state.base_text = text_base
|
| 144 |
+
st.session_state.base_metrics = metrics
|
| 145 |
+
st.session_state.show_base = True
|
| 146 |
+
|
| 147 |
+
# Columna 2: Métricas Base
|
| 148 |
+
with metrics_base_col:
|
| 149 |
+
if st.session_state.get('show_base'):
|
| 150 |
+
display_metrics_and_suggestions(
|
| 151 |
+
st.session_state.base_metrics,
|
| 152 |
+
text_type,
|
| 153 |
+
"Base"
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
# Columna 3: Texto Iteración
|
| 157 |
with text_iter_col:
|
| 158 |
+
st.markdown("### Iteración")
|
| 159 |
+
text_iter = st.text_area(
|
| 160 |
+
"Nueva versión",
|
| 161 |
height=400,
|
| 162 |
+
key="text_iter",
|
| 163 |
+
value=st.session_state.get('iter_text', ''),
|
| 164 |
+
disabled=not st.session_state.get('show_base')
|
| 165 |
)
|
| 166 |
|
| 167 |
+
if st.button(
|
| 168 |
"Analizar Iteración",
|
| 169 |
type="primary",
|
| 170 |
+
use_container_width=True,
|
| 171 |
+
disabled=not st.session_state.get('show_base')
|
| 172 |
+
):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
with st.spinner("Analizando iteración..."):
|
| 174 |
+
doc = nlp_models[lang_code](text_iter)
|
| 175 |
metrics = analyze_text_dimensions(doc)
|
| 176 |
+
|
| 177 |
+
# Guardar en estado
|
| 178 |
+
st.session_state.iter_text = text_iter
|
| 179 |
+
st.session_state.iter_metrics = metrics
|
| 180 |
+
st.session_state.show_iter = True
|
| 181 |
+
|
| 182 |
+
# Columna 4: Métricas Iteración
|
| 183 |
+
with metrics_iter_col:
|
| 184 |
+
if st.session_state.get('show_iter'):
|
| 185 |
+
display_metrics_and_suggestions(
|
| 186 |
+
st.session_state.iter_metrics,
|
| 187 |
+
text_type,
|
| 188 |
+
"Iteración",
|
| 189 |
+
show_suggestions=True
|
| 190 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
except Exception as e:
|
| 193 |
+
logger.error(f"Error en interfaz: {str(e)}")
|
| 194 |
+
st.error("Error al cargar la interfaz")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
+
#Funciones de visualización ##################################
|
| 197 |
|
| 198 |
+
def display_metrics_analysis(metrics, text_type=None):
|
| 199 |
"""
|
| 200 |
Muestra los resultados del análisis: métricas verticalmente y gráfico radar.
|
| 201 |
"""
|
|
|
|
| 272 |
logger.error(f"Error mostrando resultados: {str(e)}")
|
| 273 |
st.error("Error al mostrar los resultados")
|
| 274 |
|
| 275 |
+
def display_comparison_results(baseline_metrics, current_metrics):
|
| 276 |
+
"""Muestra comparación entre línea base y métricas actuales"""
|
| 277 |
+
|
| 278 |
+
# Crear columnas para métricas y gráfico
|
| 279 |
+
metrics_col, graph_col = st.columns([1, 1.5])
|
| 280 |
+
|
| 281 |
+
with metrics_col:
|
| 282 |
+
for dimension in ['vocabulary', 'structure', 'cohesion', 'clarity']:
|
| 283 |
+
baseline = baseline_metrics[dimension]['normalized_score']
|
| 284 |
+
current = current_metrics[dimension]['normalized_score']
|
| 285 |
+
delta = current - baseline
|
| 286 |
+
|
| 287 |
+
st.metric(
|
| 288 |
+
dimension.title(),
|
| 289 |
+
f"{current:.2f}",
|
| 290 |
+
f"{delta:+.2f}",
|
| 291 |
+
delta_color="normal" if delta >= 0 else "inverse"
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
# Sugerir herramientas de mejora
|
| 295 |
+
if delta < 0:
|
| 296 |
+
suggest_improvement_tools(dimension)
|
| 297 |
+
|
| 298 |
+
with graph_col:
|
| 299 |
+
display_radar_chart_comparison(
|
| 300 |
+
baseline_metrics,
|
| 301 |
+
current_metrics
|
| 302 |
+
)
|
| 303 |
|
| 304 |
def display_radar_chart(metrics_config, thresholds, baseline_metrics=None):
|
| 305 |
"""
|
|
|
|
| 398 |
logger.error(f"Error mostrando gráfico radar: {str(e)}")
|
| 399 |
st.error("Error al mostrar el gráfico")
|
| 400 |
|
| 401 |
+
#Funciones auxiliares ##################################
|
| 402 |
+
def suggest_improvement_tools(dimension):
|
| 403 |
+
"""Sugiere herramientas basadas en la dimensión"""
|
| 404 |
+
suggestions = []
|
| 405 |
+
for analysis, mapping in ANALYSIS_DIMENSION_MAPPING.items():
|
| 406 |
+
if dimension in mapping['primary']:
|
| 407 |
+
suggestions.extend(mapping['tools'])
|
| 408 |
+
|
| 409 |
+
st.info(f"Herramientas sugeridas para mejorar {dimension}:")
|
| 410 |
+
for tool in suggestions:
|
| 411 |
+
st.write(f"- {tool}")
|
| 412 |
+
|
| 413 |
+
def prepare_metrics_config(metrics, text_type='student_essay'):
|
| 414 |
+
"""
|
| 415 |
+
Prepara la configuración de métricas en el mismo formato que display_results.
|
| 416 |
+
Args:
|
| 417 |
+
metrics: Diccionario con las métricas analizadas
|
| 418 |
+
text_type: Tipo de texto para los umbrales
|
| 419 |
+
Returns:
|
| 420 |
+
list: Lista de configuraciones de métricas
|
| 421 |
+
"""
|
| 422 |
+
# Obtener umbrales según el tipo de texto
|
| 423 |
+
thresholds = TEXT_TYPES[text_type]['thresholds']
|
| 424 |
+
|
| 425 |
+
# Usar la misma estructura que en display_results
|
| 426 |
+
return [
|
| 427 |
+
{
|
| 428 |
+
'label': "Vocabulario",
|
| 429 |
+
'key': 'vocabulary',
|
| 430 |
+
'value': metrics['vocabulary']['normalized_score'],
|
| 431 |
+
'help': "Riqueza y variedad del vocabulario",
|
| 432 |
+
'thresholds': thresholds['vocabulary']
|
| 433 |
+
},
|
| 434 |
+
{
|
| 435 |
+
'label': "Estructura",
|
| 436 |
+
'key': 'structure',
|
| 437 |
+
'value': metrics['structure']['normalized_score'],
|
| 438 |
+
'help': "Organización y complejidad de oraciones",
|
| 439 |
+
'thresholds': thresholds['structure']
|
| 440 |
+
},
|
| 441 |
+
{
|
| 442 |
+
'label': "Cohesión",
|
| 443 |
+
'key': 'cohesion',
|
| 444 |
+
'value': metrics['cohesion']['normalized_score'],
|
| 445 |
+
'help': "Conexión y fluidez entre ideas",
|
| 446 |
+
'thresholds': thresholds['cohesion']
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
'label': "Claridad",
|
| 450 |
+
'key': 'clarity',
|
| 451 |
+
'value': metrics['clarity']['normalized_score'],
|
| 452 |
+
'help': "Facilidad de comprensión del texto",
|
| 453 |
+
'thresholds': thresholds['clarity']
|
| 454 |
+
}
|
| 455 |
+
]
|
| 456 |
+
|