Spaces:
Sleeping
Sleeping
| #modules/morphosyntax/morphosyntax_interface.py | |
| import streamlit as st | |
| from streamlit_float import * | |
| from streamlit_antd_components import * | |
| from streamlit.components.v1 import html | |
| import base64 | |
| from .morphosyntax_process import process_morphosyntactic_input | |
| from ..chatbot.chatbot import initialize_chatbot | |
| from ..utils.widget_utils import generate_unique_key | |
| from ..database.morphosintax_mongo_db import store_student_morphosyntax_result | |
| from ..database.chat_db import store_chat_history | |
| from ..database.morphosintaxis_export import export_user_interactions | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| def display_morphosyntax_interface(lang_code, nlp_models, t): | |
| """ | |
| Interfaz para el análisis morfosintáctico | |
| Args: | |
| lang_code: Código del idioma actual | |
| nlp_models: Modelos de spaCy cargados | |
| t: Diccionario de traducciones | |
| """ | |
| st.title(t['title']) | |
| input_key = f"morphosyntax_input_{lang_code}" | |
| if input_key not in st.session_state: | |
| st.session_state[input_key] = "" | |
| sentence_input = st.text_area( | |
| t['morpho_input_label'], | |
| height=150, | |
| placeholder=t['input_placeholder'], | |
| value=st.session_state[input_key], | |
| key=f"text_area_{lang_code}", | |
| on_change=lambda: setattr(st.session_state, input_key, st.session_state[f"text_area_{lang_code}"]) | |
| ) | |
| if st.button(t['analyze_button'], key=f"analyze_button_{lang_code}"): | |
| current_input = st.session_state[input_key] | |
| if current_input: | |
| doc = nlp_models[lang_code](current_input) | |
| # Análisis morfosintáctico avanzado | |
| advanced_analysis = perform_advanced_morphosyntactic_analysis(current_input, nlp_models[lang_code]) | |
| # Guardar el resultado en el estado de la sesión | |
| st.session_state.morphosyntax_result = { | |
| 'doc': doc, | |
| 'advanced_analysis': advanced_analysis | |
| } | |
| # Mostrar resultados | |
| display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t) | |
| # Guardar resultados | |
| if store_morphosyntax_result( | |
| st.session_state.username, | |
| current_input, | |
| get_repeated_words_colors(doc), | |
| advanced_analysis['arc_diagram'], | |
| advanced_analysis['pos_analysis'], | |
| advanced_analysis['morphological_analysis'], | |
| advanced_analysis['sentence_structure'] | |
| ): | |
| st.success(t['success_message']) | |
| else: | |
| st.error(t['error_message']) | |
| else: | |
| st.warning(t['warning_message']) | |
| elif 'morphosyntax_result' in st.session_state and st.session_state.morphosyntax_result is not None: | |
| # Si hay un resultado guardado, mostrarlo | |
| display_morphosyntax_results(st.session_state.morphosyntax_result, lang_code, t) | |
| else: | |
| st.info(t['initial_message']) | |
| ''' | |
| if user_input: | |
| # Añadir el mensaje del usuario al historial | |
| st.session_state.morphosyntax_chat_history.append({"role": "user", "content": user_input}) | |
| # Procesar el input del usuario nuevo al 26-9-2024 | |
| response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) | |
| # Mostrar indicador de carga | |
| with st.spinner(t.get('processing', 'Processing...')): | |
| try: | |
| # Procesar el input del usuario | |
| response, visualizations, result = process_morphosyntactic_input(user_input, lang_code, nlp_models, t) | |
| # Añadir la respuesta al historial | |
| message = { | |
| "role": "assistant", | |
| "content": response | |
| } | |
| if visualizations: | |
| message["visualizations"] = visualizations | |
| st.session_state.morphosyntax_chat_history.append(message) | |
| # Mostrar la respuesta más reciente | |
| with st.chat_message("assistant"): | |
| st.write(response) | |
| if visualizations: | |
| for i, viz in enumerate(visualizations): | |
| st.markdown(f"**Oración {i+1} del párrafo analizado**") | |
| st.components.v1.html( | |
| f""" | |
| <div style="width: 100%; overflow-x: auto; white-space: nowrap;"> | |
| <div style="min-width: 1200px;"> | |
| {viz} | |
| </div> | |
| </div> | |
| """, | |
| height=350, | |
| scrolling=True | |
| ) | |
| if i < len(visualizations) - 1: | |
| st.markdown("---") # Separador entre diagramas | |
| # Si es un análisis, guardarlo en la base de datos | |
| if user_input.startswith('/analisis_morfosintactico') and result: | |
| store_morphosyntax_result( | |
| st.session_state.username, | |
| user_input.split('[', 1)[1].rsplit(']', 1)[0], # texto analizado | |
| result.get('repeated_words', {}), | |
| visualizations, | |
| result.get('pos_analysis', []), | |
| result.get('morphological_analysis', []), | |
| result.get('sentence_structure', []) | |
| ) | |
| except Exception as e: | |
| st.error(f"{t['error_processing']}: {str(e)}") | |
| # Forzar la actualización de la interfaz | |
| st.rerun() | |
| # Botón para limpiar el historial del chat | |
| if st.button(t['clear_chat'], key=generate_unique_key('morphosyntax', 'clear_chat')): | |
| st.session_state.morphosyntax_chat_history = [] | |
| st.rerun() | |
| ''' | |
| ''' | |
| ############ MODULO PARA DEPURACIÓN Y PRUEBAS ##################################################### | |
| def display_morphosyntax_interface(lang_code, nlp_models, t): | |
| st.subheader(t['morpho_title']) | |
| text_input = st.text_area( | |
| t['warning_message'], | |
| height=150, | |
| key=generate_unique_key("morphosyntax", "text_area") | |
| ) | |
| if st.button( | |
| t['results_title'], | |
| key=generate_unique_key("morphosyntax", "analyze_button") | |
| ): | |
| if text_input: | |
| # Aquí iría tu lógica de análisis morfosintáctico | |
| # Por ahora, solo mostraremos un mensaje de placeholder | |
| st.info(t['analysis_placeholder']) | |
| else: | |
| st.warning(t['no_text_warning']) | |
| ### | |
| ################################################# | |
| ''' | |