Update modules/chatbot.py
Browse files- modules/chatbot.py +56 -22
modules/chatbot.py
CHANGED
|
@@ -1,25 +1,59 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
from dotenv import load_dotenv
|
| 4 |
-
|
| 5 |
-
# Cargar variables de entorno
|
| 6 |
-
load_dotenv()
|
| 7 |
-
|
| 8 |
-
class Llama2Chatbot:
|
| 9 |
-
def __init__(self):
|
| 10 |
-
self.API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-hf"
|
| 11 |
-
api_key = os.getenv("HF_API_KEY")
|
| 12 |
-
if not api_key:
|
| 13 |
-
raise ValueError("No se encontr贸 la clave de API de Hugging Face. Aseg煤rate de configurar la variable de entorno HF_API_KEY.")
|
| 14 |
-
self.headers = {"Authorization": f"Bearer {api_key}"}
|
| 15 |
-
|
| 16 |
-
def generate_response(self, prompt):
|
| 17 |
-
payload = {"inputs": prompt}
|
| 18 |
-
response = requests.post(self.API_URL, headers=self.headers, json=payload)
|
| 19 |
-
return response.json()[0]['generated_text']
|
| 20 |
|
| 21 |
def initialize_chatbot():
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
def get_chatbot_response(
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 2 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
def initialize_chatbot():
|
| 5 |
+
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
| 6 |
+
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
|
| 7 |
+
return model, tokenizer
|
| 8 |
|
| 9 |
+
def get_chatbot_response(model, tokenizer, prompt, src_lang):
|
| 10 |
+
tokenizer.src_lang = src_lang
|
| 11 |
+
encoded_input = tokenizer(prompt, return_tensors="pt")
|
| 12 |
+
generated_tokens = model.generate(**encoded_input, max_length=100)
|
| 13 |
+
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 14 |
+
|
| 15 |
+
def display_chatbot_interface(lang_code):
|
| 16 |
+
translations = {
|
| 17 |
+
'es': {
|
| 18 |
+
'title': "AIdeaText - Chatbot Multiling眉e",
|
| 19 |
+
'input_placeholder': "Escribe tu mensaje aqu铆...",
|
| 20 |
+
'send_button': "Enviar",
|
| 21 |
+
},
|
| 22 |
+
'en': {
|
| 23 |
+
'title': "AIdeaText - Multilingual Chatbot",
|
| 24 |
+
'input_placeholder': "Type your message here...",
|
| 25 |
+
'send_button': "Send",
|
| 26 |
+
},
|
| 27 |
+
'fr': {
|
| 28 |
+
'title': "AIdeaText - Chatbot Multilingue",
|
| 29 |
+
'input_placeholder': "脡crivez votre message ici...",
|
| 30 |
+
'send_button': "Envoyer",
|
| 31 |
+
}
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
t = translations[lang_code]
|
| 35 |
+
|
| 36 |
+
st.header(t['title'])
|
| 37 |
+
|
| 38 |
+
if 'chatbot' not in st.session_state:
|
| 39 |
+
st.session_state.chatbot, st.session_state.tokenizer = initialize_chatbot()
|
| 40 |
+
|
| 41 |
+
if 'messages' not in st.session_state:
|
| 42 |
+
st.session_state.messages = []
|
| 43 |
+
|
| 44 |
+
for message in st.session_state.messages:
|
| 45 |
+
with st.chat_message(message["role"]):
|
| 46 |
+
st.markdown(message["content"])
|
| 47 |
+
|
| 48 |
+
if prompt := st.chat_input(t['input_placeholder']):
|
| 49 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 50 |
+
with st.chat_message("user"):
|
| 51 |
+
st.markdown(prompt)
|
| 52 |
+
|
| 53 |
+
with st.chat_message("assistant"):
|
| 54 |
+
response = get_chatbot_response(st.session_state.chatbot, st.session_state.tokenizer, prompt, lang_code)
|
| 55 |
+
st.markdown(response)
|
| 56 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 57 |
+
|
| 58 |
+
# Guardar la conversaci贸n en la base de datos
|
| 59 |
+
store_chat_history(st.session_state.username, st.session_state.messages)
|