Create chatbot.py
Browse files- modules/chatbot.py +21 -0
modules/chatbot.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
class Llama2Chatbot:
|
| 5 |
+
def __init__(self):
|
| 6 |
+
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
| 7 |
+
self.model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
| 8 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
self.model.to(self.device)
|
| 10 |
+
|
| 11 |
+
def generate_response(self, prompt, max_length=100):
|
| 12 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
| 13 |
+
outputs = self.model.generate(**inputs, max_length=max_length)
|
| 14 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 15 |
+
return response
|
| 16 |
+
|
| 17 |
+
def initialize_chatbot():
|
| 18 |
+
return Llama2Chatbot()
|
| 19 |
+
|
| 20 |
+
def get_chatbot_response(chatbot, prompt):
|
| 21 |
+
return chatbot.generate_response(prompt)
|