Update modules/studentact/student_activities_v2.py
Browse files
modules/studentact/student_activities_v2.py
CHANGED
|
@@ -536,185 +536,49 @@ def display_semantic_activities(username: str, t: dict):
|
|
| 536 |
|
| 537 |
###################################################################################################
|
| 538 |
def display_discourse_activities(username: str, t: dict):
|
| 539 |
-
"""
|
| 540 |
-
Muestra actividades de análisis del discurso (mostrado como 'Análisis comparado de textos' en la UI)
|
| 541 |
-
Versión simplificada que muestra cualquier dato disponible
|
| 542 |
-
"""
|
| 543 |
try:
|
| 544 |
logger.info(f"Recuperando análisis del discurso para {username}")
|
| 545 |
-
|
| 546 |
-
# Importación inline para evitar circularidad
|
| 547 |
-
from ..database.mongo_db import get_collection
|
| 548 |
-
|
| 549 |
-
# Obtener la colección directamente para evitar cualquier filtrado
|
| 550 |
-
collection = get_collection('student_discourse_analysis')
|
| 551 |
-
if not collection:
|
| 552 |
-
st.info(t.get('no_discourse_analyses', 'No hay análisis comparados de textos registrados'))
|
| 553 |
-
return
|
| 554 |
-
|
| 555 |
-
# Consulta básica - solo por username para capturar todos los registros posibles
|
| 556 |
-
query = {"username": username}
|
| 557 |
-
|
| 558 |
-
# Ejecutar consulta
|
| 559 |
-
try:
|
| 560 |
-
analyses = list(collection.find(query).sort("timestamp", -1))
|
| 561 |
-
logger.info(f"Recuperados {len(analyses)} análisis para {username}")
|
| 562 |
-
except Exception as e:
|
| 563 |
-
logger.error(f"Error recuperando análisis: {str(e)}")
|
| 564 |
-
analyses = []
|
| 565 |
|
| 566 |
if not analyses:
|
| 567 |
-
|
|
|
|
| 568 |
return
|
| 569 |
|
| 570 |
-
|
| 571 |
for analysis in analyses:
|
| 572 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 573 |
# Formatear fecha
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
| 577 |
-
except:
|
| 578 |
-
formatted_date = str(analysis.get('timestamp', 'Fecha desconocida'))
|
| 579 |
-
|
| 580 |
-
# Crear título del expander
|
| 581 |
-
expander_title = f"{t.get('analysis_date', 'Fecha')}: {formatted_date}"
|
| 582 |
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
"
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
)
|
| 595 |
-
|
| 596 |
-
# 2. Mostrar conceptos clave si existen
|
| 597 |
-
if 'key_concepts1' in analysis and analysis['key_concepts1']:
|
| 598 |
-
st.subheader(t.get('key_concepts', 'Conceptos clave'))
|
| 599 |
-
|
| 600 |
-
col1, col2 = st.columns(2)
|
| 601 |
-
|
| 602 |
-
with col1:
|
| 603 |
-
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
| 604 |
-
try:
|
| 605 |
-
# Mostrar como dataframe o texto según formato
|
| 606 |
-
if isinstance(analysis['key_concepts1'], list):
|
| 607 |
-
if len(analysis['key_concepts1']) > 0:
|
| 608 |
-
if isinstance(analysis['key_concepts1'][0], list):
|
| 609 |
-
df = pd.DataFrame(analysis['key_concepts1'], columns=['Concepto', 'Relevancia'])
|
| 610 |
-
st.dataframe(df)
|
| 611 |
-
else:
|
| 612 |
-
st.write(", ".join(str(c) for c in analysis['key_concepts1']))
|
| 613 |
-
else:
|
| 614 |
-
st.write(str(analysis['key_concepts1']))
|
| 615 |
-
except:
|
| 616 |
-
st.write(str(analysis['key_concepts1']))
|
| 617 |
-
|
| 618 |
-
with col2:
|
| 619 |
-
if 'key_concepts2' in analysis and analysis['key_concepts2']:
|
| 620 |
-
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
| 621 |
-
try:
|
| 622 |
-
# Mostrar como dataframe o texto según formato
|
| 623 |
-
if isinstance(analysis['key_concepts2'], list):
|
| 624 |
-
if len(analysis['key_concepts2']) > 0:
|
| 625 |
-
if isinstance(analysis['key_concepts2'][0], list):
|
| 626 |
-
df = pd.DataFrame(analysis['key_concepts2'], columns=['Concepto', 'Relevancia'])
|
| 627 |
-
st.dataframe(df)
|
| 628 |
-
else:
|
| 629 |
-
st.write(", ".join(str(c) for c in analysis['key_concepts2']))
|
| 630 |
-
else:
|
| 631 |
-
st.write(str(analysis['key_concepts2']))
|
| 632 |
-
except:
|
| 633 |
-
st.write(str(analysis['key_concepts2']))
|
| 634 |
-
|
| 635 |
-
# 3. Mostrar cualquier gráfico disponible
|
| 636 |
-
st.subheader(t.get('visualizations', 'Visualizaciones'))
|
| 637 |
-
|
| 638 |
-
# Revisar todos los campos que podrían contener gráficos
|
| 639 |
-
graph_fields = ['graph1', 'graph2', 'combined_graph']
|
| 640 |
-
found_graphs = False
|
| 641 |
-
|
| 642 |
-
for field in graph_fields:
|
| 643 |
-
if field in analysis and analysis[field]:
|
| 644 |
-
found_graphs = True
|
| 645 |
-
|
| 646 |
-
# Título según el tipo de gráfico
|
| 647 |
-
if field == 'graph1':
|
| 648 |
-
title = t.get('graph1_title', 'Gráfico Texto 1')
|
| 649 |
-
elif field == 'graph2':
|
| 650 |
-
title = t.get('graph2_title', 'Gráfico Texto 2')
|
| 651 |
-
else:
|
| 652 |
-
title = t.get('combined_graph_title', 'Gráfico Combinado')
|
| 653 |
-
|
| 654 |
-
st.markdown(f"**{title}**")
|
| 655 |
-
|
| 656 |
-
# Mostrar el gráfico según su tipo
|
| 657 |
-
graph_data = analysis[field]
|
| 658 |
-
|
| 659 |
-
try:
|
| 660 |
-
# Si es bytes, mostrar directamente
|
| 661 |
-
if isinstance(graph_data, bytes):
|
| 662 |
-
st.image(graph_data, use_column_width=True)
|
| 663 |
-
|
| 664 |
-
# Si es string, intentar decodificar como base64
|
| 665 |
-
elif isinstance(graph_data, str):
|
| 666 |
-
try:
|
| 667 |
-
import base64
|
| 668 |
-
# Intentar diferentes formatos de base64
|
| 669 |
-
if graph_data.startswith('data:image'):
|
| 670 |
-
image_bytes = base64.b64decode(graph_data.split(',')[1])
|
| 671 |
-
else:
|
| 672 |
-
image_bytes = base64.b64decode(graph_data)
|
| 673 |
-
|
| 674 |
-
st.image(image_bytes, use_column_width=True)
|
| 675 |
-
except:
|
| 676 |
-
# Si falla la decodificación, mostrar como texto si no es muy largo
|
| 677 |
-
if len(graph_data) < 100:
|
| 678 |
-
st.text(f"Datos no decodificables: {graph_data}")
|
| 679 |
-
else:
|
| 680 |
-
st.text(f"Datos no decodificables (muy largos)")
|
| 681 |
-
|
| 682 |
-
# Otros tipos (matplotlib, etc.)
|
| 683 |
-
else:
|
| 684 |
-
st.write(f"Gráfico presente pero en formato no mostrable")
|
| 685 |
-
except Exception as e:
|
| 686 |
-
st.error(f"Error mostrando gráfico: {str(e)}")
|
| 687 |
-
|
| 688 |
-
# Si no hay gráficos, mostrar mensaje
|
| 689 |
-
if not found_graphs:
|
| 690 |
-
st.info(t.get('no_graphs', 'No hay gráficos disponibles para este análisis'))
|
| 691 |
-
|
| 692 |
-
# Mostrar botón para generar nuevos gráficos (para futura implementación)
|
| 693 |
-
# st.button("Regenerar gráficos", key=f"btn_regenerate_{str(analysis.get('_id', 'unknown'))}")
|
| 694 |
-
|
| 695 |
-
# 4. Mostrar campos adicionales que puedan ser útiles
|
| 696 |
-
with st.expander("Ver datos adicionales", expanded=False):
|
| 697 |
-
# Filtrar campos para mostrar solo los relevantes
|
| 698 |
-
filtered_data = {k: v for k, v in analysis.items()
|
| 699 |
-
if k not in ['_id', 'username', 'timestamp', 'text1', 'text2',
|
| 700 |
-
'graph1', 'graph2', 'combined_graph',
|
| 701 |
-
'key_concepts1', 'key_concepts2']
|
| 702 |
-
and not isinstance(v, bytes)
|
| 703 |
-
and not (isinstance(v, str) and len(v) > 200)}
|
| 704 |
-
|
| 705 |
-
if filtered_data:
|
| 706 |
-
st.json(filtered_data)
|
| 707 |
-
else:
|
| 708 |
-
st.text("No hay datos adicionales disponibles")
|
| 709 |
|
| 710 |
except Exception as e:
|
| 711 |
logger.error(f"Error procesando análisis individual: {str(e)}")
|
| 712 |
-
st.error(f"Error procesando análisis: {str(e)}")
|
| 713 |
continue
|
| 714 |
|
| 715 |
except Exception as e:
|
| 716 |
-
logger.error(f"Error
|
| 717 |
-
st.error(t.get('error_discourse', 'Error al mostrar análisis
|
|
|
|
| 718 |
|
| 719 |
#################################################################################
|
| 720 |
def display_chat_activities(username: str, t: dict):
|
|
@@ -767,3 +631,18 @@ def display_chat_activities(username: str, t: dict):
|
|
| 767 |
st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
|
| 768 |
|
| 769 |
#################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 536 |
|
| 537 |
###################################################################################################
|
| 538 |
def display_discourse_activities(username: str, t: dict):
|
| 539 |
+
"""Muestra actividades de análisis del discurso"""
|
|
|
|
|
|
|
|
|
|
| 540 |
try:
|
| 541 |
logger.info(f"Recuperando análisis del discurso para {username}")
|
| 542 |
+
analyses = get_student_discourse_analysis(username)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 543 |
|
| 544 |
if not analyses:
|
| 545 |
+
logger.info("No se encontraron análisis del discurso")
|
| 546 |
+
st.info(t.get('no_discourse_analyses', 'No hay análisis del discurso registrados'))
|
| 547 |
return
|
| 548 |
|
| 549 |
+
logger.info(f"Procesando {len(analyses)} análisis del discurso")
|
| 550 |
for analysis in analyses:
|
| 551 |
try:
|
| 552 |
+
# Verificar campos mínimos necesarios
|
| 553 |
+
if not all(key in analysis for key in ['timestamp', 'combined_graph']):
|
| 554 |
+
logger.warning(f"Análisis incompleto: {analysis.keys()}")
|
| 555 |
+
continue
|
| 556 |
+
|
| 557 |
# Formatear fecha
|
| 558 |
+
timestamp = datetime.fromisoformat(analysis['timestamp'].replace('Z', '+00:00'))
|
| 559 |
+
formatted_date = timestamp.strftime("%d/%m/%Y %H:%M:%S")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
+
with st.expander(f"{t.get('analysis_date', 'Fecha')}: {formatted_date}", expanded=False):
|
| 562 |
+
if analysis['combined_graph']:
|
| 563 |
+
logger.debug("Decodificando gráfico combinado")
|
| 564 |
+
try:
|
| 565 |
+
image_bytes = base64.b64decode(analysis['combined_graph'])
|
| 566 |
+
st.image(image_bytes, use_column_width=True)
|
| 567 |
+
logger.debug("Gráfico mostrado exitosamente")
|
| 568 |
+
except Exception as img_error:
|
| 569 |
+
logger.error(f"Error decodificando imagen: {str(img_error)}")
|
| 570 |
+
st.error(t.get('error_loading_graph', 'Error al cargar el gráfico'))
|
| 571 |
+
else:
|
| 572 |
+
st.info(t.get('no_visualization', 'No hay visualización comparativa disponible'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 573 |
|
| 574 |
except Exception as e:
|
| 575 |
logger.error(f"Error procesando análisis individual: {str(e)}")
|
|
|
|
| 576 |
continue
|
| 577 |
|
| 578 |
except Exception as e:
|
| 579 |
+
logger.error(f"Error mostrando análisis del discurso: {str(e)}")
|
| 580 |
+
st.error(t.get('error_discourse', 'Error al mostrar análisis del discurso'))
|
| 581 |
+
|
| 582 |
|
| 583 |
#################################################################################
|
| 584 |
def display_chat_activities(username: str, t: dict):
|
|
|
|
| 631 |
st.error(t.get('error_chat', 'Error al mostrar historial del chat'))
|
| 632 |
|
| 633 |
#################################################################################
|
| 634 |
+
|
| 635 |
+
def display_discourse_comparison(analysis: dict, t: dict):
|
| 636 |
+
"""Muestra la comparación de análisis del discurso"""
|
| 637 |
+
st.subheader(t.get('comparison_results', 'Resultados de la comparación'))
|
| 638 |
+
|
| 639 |
+
col1, col2 = st.columns(2)
|
| 640 |
+
with col1:
|
| 641 |
+
st.markdown(f"**{t.get('concepts_text_1', 'Conceptos Texto 1')}**")
|
| 642 |
+
df1 = pd.DataFrame(analysis['key_concepts1'])
|
| 643 |
+
st.dataframe(df1)
|
| 644 |
+
|
| 645 |
+
with col2:
|
| 646 |
+
st.markdown(f"**{t.get('concepts_text_2', 'Conceptos Texto 2')}**")
|
| 647 |
+
df2 = pd.DataFrame(analysis['key_concepts2'])
|
| 648 |
+
st.dataframe(df2)
|