File size: 21,444 Bytes
0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 762acfe 9cb0411 8332f7a 9cb0411 8332f7a 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 8332f7a 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 0ef9213 9cb0411 762acfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
import logging
import os
import docx
import PyPDF2
from docx.shared import RGBColor, Pt
from io import BytesIO, IOBase
import tempfile
import re
import datetime
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import huggingface_hub
###############################################################################
# 1) Logging Configuration
###############################################################################
logging.basicConfig(
level=logging.INFO, # or logging.DEBUG for more verbose logs
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s"
)
logger = logging.getLogger("LLM-Legal-App")
###############################################################################
# 2) Initialize Hugging Face Model
###############################################################################
def initialize_model():
"""Initialize the phi-2 model and tokenizer from HuggingFace."""
logger.info("Initializing phi-2 model and tokenizer...")
try:
# Access token might be needed for some models
# token = huggingface_hub.get_token()
model_name = "microsoft/phi-2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
logger.info("Successfully initialized phi-2 model and tokenizer.")
return model, tokenizer
except Exception as e:
logger.exception("Error initializing Hugging Face model.")
raise ValueError(f"Failed to initialize model: {e}")
# Initialize model and tokenizer
model, tokenizer = initialize_model()
###############################################################################
# 3) LLM Utility Functions (Generation & Review)
###############################################################################
def generate_with_model(prompt, max_length=1400, temperature=0.3):
"""Generate text using the Hugging Face model."""
logger.info("Generating text with phi-2 model.")
try:
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate with parameters similar to the original OpenAI call
generation_config = {
"max_new_tokens": max_length,
"temperature": temperature,
"top_p": 0.9,
"do_sample": temperature > 0,
"pad_token_id": tokenizer.eos_token_id
}
with torch.no_grad():
outputs = model.generate(**inputs, **generation_config)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove the prompt from the response
if response.startswith(prompt):
response = response[len(prompt):].strip()
logger.info("Text generation complete.")
return response
except Exception as e:
logger.exception("Error during text generation.")
return f"Error generating text: {e}"
def generate_legal_document(doc_type, party_a, party_b, context, country):
"""
Uses DocumentCogito to generate a legal document. Returns the document text.
"""
logger.info(f"Starting generation for doc_type={doc_type!r}.")
# Fill placeholders if fields are missing
party_a = party_a if party_a else "[Party A Not Provided]"
party_b = party_b if party_b else "[Party B Not Provided]"
context = context if context else "[Context Not Provided]"
prompt = f"""
You are a helpful legal assistant. Generate a {doc_type} for:
1) {party_a}
2) {party_b}
Context/brief of the agreement:
{context}.
The document should include:
- Purpose of the {doc_type}
- Responsibilities and obligations of each party
- Confidentiality terms
- Payment terms (use [To Be Determined] if not specified)
- Term (duration) and termination
- Governing law: {country}
- Jurisdiction: [Appropriate region in {country} if not provided]
- Signature blocks
Use formal language, but keep it relatively clear and readable.
For any missing information, use placeholders like [To Be Determined].
Include a disclaimer that this is a draft and not legally binding until reviewed and signed.
"""
logger.debug(f"Generated prompt:\n{prompt}")
return generate_with_model(prompt, max_length=1400, temperature=0.3)
def review_legal_document(doc_text, doc_type, party_a, party_b):
"""
Reviews document: first with rule-based checks, then wording analysis.
"""
logger.info("Starting document review (rule-based and wording).")
# --- Rule-Based Review ---
rule_based_prompt = f"""
You are a legal AI assistant reviewing a document. Provide a review,
structured into the following numbered sections. Be concise and factual. Do NOT
use Markdown. Use plain text labels for each section.
Document text:
\"\"\"
{doc_text}
\"\"\"
Review Sections:
1) Parties and Authority:
- Confirm the full legal names of all parties.
- Make sure the people signing can legally commit their organizations.
2) Scope of Work / Obligations:
- Check that the contract clearly describes what each side must do.
- Look for deadlines, milestones, or deliverables.
- Ensure everything is realistic and not overly vague.
3) Definitions and Key Terms:
- See if there's a section that explains important terms.
- Ensure those terms are used the same way throughout the contract.
- Avoid or clarify any ambiguous language.
4) Payment Terms (If Applicable):
- Check how much is owed, the currency, and when it's due.
- Look for penalties, interest, or late fees.
- Note how and when invoices are sent or paid.
5) Term and Termination:
- Identify when the contract starts and ends.
- Understand how it can be renewed.
- See the conditions and notice required for ending the contract early.
6) Intellectual Property (IP) Rights:
- Confirm who owns any work created under the agreement.
- Note if licenses are granted for using the IP, and for how long.
7) Confidentiality and Privacy:
- Check what is considered confidential information.
- Look for exceptions (like already public info).
- See how long the confidentiality rules apply.
8) Warranties and Representations:
- Note any performance guarantees or quality promises.
- Look for disclaimers (like "as is" clauses).
9) Indemnification:
- See who will pay legal costs or damages if there's a lawsuit or claim.
- Check any limits on what's covered.
10) Limitation of Liability:
- Check if there's a maximum amount one side can claim in damages.
- Look for excluded damages, like lost profits.
11) Dispute Resolution and Governing Law:
- See if disputes go to arbitration, mediation, or court.
- Note which state or country's laws will apply.
12) Force Majeure (Unforeseen Events):
- Look for events like natural disasters or war that could suspend obligations.
- See if there are notice requirements for these events.
13) Notices and Amendments:
- Check how official notices must be sent (email, mail, etc.).
- Find out how to properly change the contract (in writing, signatures, etc.).
14) Entire Agreement and Severability:
- Confirm that this contract replaces all previous agreements.
- Ensure that if one clause is invalid, the rest still stands.
15) Signatures and Dates:
- Make sure the right people sign in their proper roles.
- Verify the date of signature and when the contract goes into effect.
16) Ambiguities, Contradictions, and Hidden Clauses:
- Watch for contradictory statements or clauses that conflict.
- Beware of vague phrases like "best efforts" without clear guidelines.
- Check for hidden or "buried" clauses in fine print or attachments.
17) Compliance and Regulatory Alignment:
- Ensure the contract follows relevant laws and rules.
- Check for industry-specific requirements.
18) Practical Considerations:
- Make sure deadlines and other requirements are doable.
- Confirm all negotiations are reflected in writing.
- Avoid blank or undefined items (like fees or dates "to be decided").
"""
logger.debug(f"Generated rule-based review prompt:\n{rule_based_prompt}")
try:
rule_based_review = generate_with_model(rule_based_prompt, max_length=2000, temperature=0.3)
except Exception as e:
logger.exception("Error during rule-based review.")
return f"Error during rule-based review: {e}"
# --- Wording Analysis ---
wording_analysis_prompt = f"""
You are a legal AI assistant. Analyze the following legal document for its wording:
Document text:
\"\"\"
{doc_text}
\"\"\"
Provide a comprehensive analysis of the document's wording, covering these aspects for the ENTIRE document text:
1. **Clarity and Precision:** Identify ambiguous or vague language, and suggest improvements.
2. **Readability:** Assess the overall readability and suggest improvements for clarity, including sentence structure and complexity.
3. **Formal Tone:** Check if the language maintains a formal and professional tone appropriate for a legal document, and suggest changes if needed.
4. **Consistency:** Ensure consistent use of terms and phrasing throughout the document. Point out any inconsistencies.
5. **Redundancy:** Identify any unnecessary repetition of words or phrases.
6. **Jargon and Technical Terms:** Identify jargon or technical terms that might be unclear to a non-expert, and suggest clearer alternatives where appropriate.
7. **Overall Recommendations:** Give overall recommendations for improving the document's wording.
Provide your analysis in plain text, without using Markdown. Label each section of your analysis clearly (e.g., "Clarity and Precision:", "Readability:", etc.).
"""
logger.debug(f"Generated wording analysis prompt:\n{wording_analysis_prompt}")
try:
wording_analysis = generate_with_model(wording_analysis_prompt, max_length=1000, temperature=0.3)
except Exception as e:
logger.exception("Error during wording analysis.")
return f"Error during wording analysis: {e}"
combined_review = f"Rule-Based Analysis:\n\n{rule_based_review}\n\nWording Analysis:\n\n{wording_analysis}"
return combined_review
###############################################################################
# 4) File Parsing (PDF, DOCX)
###############################################################################
def parse_bytesio(file_data: BytesIO) -> str:
"""Parses a BytesIO object representing a PDF or DOCX."""
logger.info("Parsing BytesIO object...")
try:
# Attempt to determine file type from content
try:
doc_obj = docx.Document(file_data)
return "\n".join([para.text for para in doc_obj.paragraphs]).strip()
except docx.opc.exceptions.PackageNotFoundError:
logger.info("BytesIO is not DOCX, trying PDF.")
file_data.seek(0)
try:
pdf_reader = PyPDF2.PdfReader(file_data)
return "\n".join([page.extract_text() for page in pdf_reader.pages if page.extract_text()]).strip()
except Exception as e:
logger.exception(f"Error parsing BytesIO as PDF: {e}")
return f"Error parsing BytesIO as PDF: {e}"
except Exception as e:
logger.exception(f"Error processing BytesIO: {e}")
return f"Error processing file content: {e}"
except Exception as e:
logger.exception(f"Error parsing BytesIO: {e}")
return f"Error parsing BytesIO: {e}"
def parse_uploaded_file_path(file_data) -> str:
"""Takes file data, determines type, extracts text."""
if not file_data:
logger.warning("No file provided.")
return ""
if isinstance(file_data, str):
file_path = file_data
logger.info(f"Received filepath: {file_path}")
elif isinstance(file_data, dict) and 'name' in file_data:
file_path = file_data['name']
logger.info(f"Received file object with name: {file_path}")
elif isinstance(file_data, (BytesIO, IOBase)):
return parse_bytesio(file_data)
else:
logger.error(f"Unexpected file_data type: {type(file_data)}")
return "Error: Unexpected file data format."
logger.info(f"Attempting to parse file at {file_path}")
try:
_, ext = os.path.splitext(file_path)
ext = ext.lower()
if ext == ".pdf":
with open(file_path, "rb") as f:
pdf_reader = PyPDF2.PdfReader(f)
return "\n".join([page.extract_text() for page in pdf_reader.pages if page.extract_text()]).strip()
elif ext == ".docx":
doc_obj = docx.Document(file_path)
return "\n".join([para.text for para in doc_obj.paragraphs]).strip()
else:
return "Unsupported file format."
except Exception as e:
logger.exception(f"Error parsing file: {e}")
return f"Error parsing file: {e}"
finally:
pass
###############################################################################
# 5) DOCX Creation and Saving
###############################################################################
def clean_markdown(text):
"""Removes common Markdown formatting."""
if not text: return ""
text = re.sub(r'^#+\s+', '', text, flags=re.MULTILINE)
text = re.sub(r'(\*\*|__)(.*?)(\*\*|__)', r'\2', text)
text = re.sub(r'(\*|_)(.*?)(\*|_)', r'\2', text)
text = re.sub(r'^[\-\+\*]\s+', '', text, flags=re.MULTILINE)
text = re.sub(r'^\d+\.\s+', '', text, flags=re.MULTILINE)
text = re.sub(r'^[-_*]{3,}$', '', text, flags=re.MULTILINE)
text = re.sub(r'!\[(.*?)\]\((.*?)\)', '', text)
text = re.sub(r'\[(.*?)\]\((.*?)\)', r'\1', text)
return text.strip()
def create_and_save_docx(doc_text, review_text=None, doc_type="Unknown", party_a="Party A", party_b="Party B"):
"""Creates DOCX, adds review, saves to temp file, returns path."""
logger.debug("Creating and saving DOCX.")
document = docx.Document()
now = datetime.datetime.now()
timestamp = now.strftime("%Y%m%d_%H%M%S")
file_name = f"HF_AI_Review_{doc_type}_{timestamp}.docx"
title = f"DocumentCogito Analysis of {doc_type} between companies {party_a} and {party_b}"
document.add_heading(title, level=1)
if doc_text:
document.add_heading("Generated Document", level=2)
for para in clean_markdown(doc_text).split("\n"):
document.add_paragraph(para)
if review_text:
document.add_heading("LLM Review", level=2)
for section in review_text.split("\n\n"): # Split into sections
if section.startswith("Rule-Based Analysis:"):
analysis_heading = document.add_paragraph()
analysis_run = analysis_heading.add_run("Rule-Based Analysis")
analysis_run.font.size = Pt(14)
analysis_run.font.color.rgb = RGBColor(0xFF, 0x00, 0x00)
for para in section[len("Rule-Based Analysis:"):].split("\n"):
if re.match(r"^\d+\)", para): # Check for numbered points
p = document.add_paragraph(style='List Number')
p.add_run(para).font.color.rgb = RGBColor(0xFF, 0x00, 0x00) #red
else:
document.add_paragraph(para)
elif section.startswith("Wording Analysis:"):
analysis_heading = document.add_paragraph()
analysis_run = analysis_heading.add_run("Wording Analysis")
analysis_run.font.size = Pt(14)
analysis_run.font.color.rgb = RGBColor(0xFF, 0x00, 0x00)
for para in section[len("Wording Analysis:"):].split("\n"):
document.add_paragraph(para) # black, no numbering
else: # Other sections (if any)
document.add_paragraph(section)
with tempfile.NamedTemporaryFile(delete=False, suffix=f"_{file_name}") as tmpfile:
document.save(tmpfile.name)
logger.debug(f"DOCX saved to: {tmpfile.name}")
return tmpfile.name
###############################################################################
# 6) Gradio Interface Functions
###############################################################################
def generate_document_interface(doc_type, party_a, party_b, context, country):
"""Handles document generation."""
logger.info(f"User requested doc generation: {doc_type}, {country}")
doc_text = generate_legal_document(doc_type, party_a, party_b, context, country)
if doc_text.startswith("Error"):
return doc_text, None
docx_file_path = create_and_save_docx(doc_text, doc_type=doc_type, party_a=party_a, party_b=party_b)
return doc_text, docx_file_path
def review_document_interface(file_data, doc_type, party_a, party_b):
"""Handles document review."""
logger.info("User requested review.")
if not file_data:
return "No file uploaded.", None
original_text = parse_uploaded_file_path(file_data)
if original_text.startswith("Error") or original_text.startswith("Unsupported"):
return original_text, None
review_text = review_legal_document(original_text, doc_type, party_a, party_b)
if review_text.startswith("Error"):
return review_text, None
docx_file_path = create_and_save_docx(None, review_text, doc_type, party_a, party_b)
return review_text, docx_file_path
###############################################################################
# 7) Build & Launch Gradio App
###############################################################################
# Define custom CSS in a string.
custom_css = """
.tab-one {
background-color: #D1EEFC; /* Light blue */
color: #333;
}
.tab-two {
background-color: #FCEED1; /* Light orange */
color: #333;
}
/* If you want to style the tab label differently, you may need to target
specific child elements (like a .tab__header) within the class. */
"""
def build_app():
with gr.Blocks(css=custom_css) as demo:
gr.Markdown(
"""
# UST Global Legal Document Analyzer (Hugging Face Version)
**Review an Existing MOU, SOW, MSA in PDF/DOCX format**: Upload a document for analysis.
**Disclaimer**: This tool provides assistance but is not a substitute for professional legal advice.
"""
)
with gr.Tabs(selected=1):
with gr.Tab("Generate Document", visible=False):
doc_type = gr.Dropdown(label="Document Type", choices=["MOU", "MSA", "SoW", "NDA"], value="MOU")
party_a = gr.Textbox(label="Party A Name", placeholder="e.g., Tech Innovations LLC")
party_b = gr.Textbox(label="Party B Name", placeholder="e.g., Global Consulting Corp")
context = gr.Textbox(label="Context/Brief", placeholder="Short summary of the agreement...")
country = gr.Dropdown(label="Governing Law (Country)", choices=["India", "Malaysia", "US", "UK", "Singapore", "Japan"], value="India")
gen_button = gr.Button("Generate Document")
gen_output_text = gr.Textbox(label="Generated Document", lines=15, placeholder="Generated document will appear here...")
gen_output_file = gr.File(label="Download DOCX", type="filepath")
gen_button.click(
generate_document_interface,
inputs=[doc_type, party_a, party_b, context, country],
outputs=[gen_output_text, gen_output_file]
)
with gr.Tab("Review Document", elem_classes="tab-one", id=1):
# Hidden inputs to store values from Generate tab
doc_type_review = gr.Dropdown(label="Document Type", choices=["MOU", "MSA", "SoW", "NDA"], value="MOU", visible=False)
party_a_review = gr.Textbox(label="Party A Name", visible=False)
party_b_review = gr.Textbox(label="Party B Name", visible=False)
file_input = gr.File(label="Upload PDF/DOCX for Review", type="filepath")
review_button = gr.Button("Review Document")
review_output_text = gr.Textbox(label="Review", lines=15, placeholder="Review will appear here...")
review_output_file = gr.File(label="Download Reviewed DOCX", type="filepath")
review_button.click(
review_document_interface,
inputs=[file_input, doc_type_review, party_a_review, party_b_review],
outputs=[review_output_text, review_output_file]
)
# Copy values from Generate to Review tab (hidden fields)
gen_button.click(lambda x, y, z: (x, y, z), [doc_type, party_a, party_b], [doc_type_review, party_a_review, party_b_review])
gr.Markdown("**Note:** Scanned PDFs may not parse correctly. .docx is generally preferred.")
return demo
# For Hugging Face Spaces deployment
if __name__ == "__main__":
# create_requirements_file()
logger.info("Initializing Gradio interface...")
demo = build_app()
logger.info("Launching Gradio app.")
demo.launch(debug=True,share=False) |