Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import einops | |
| import torch | |
| import torch as th | |
| import torch.nn as nn | |
| from ldm.modules.diffusionmodules.util import ( | |
| conv_nd, | |
| linear, | |
| zero_module, | |
| timestep_embedding, | |
| ) | |
| from einops import rearrange, repeat | |
| from torchvision.utils import make_grid | |
| from ldm.modules.attention import SpatialTransformer | |
| from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock | |
| from ldm.models.diffusion.ddpm import LatentDiffusion | |
| from ldm.util import log_txt_as_img, exists, instantiate_from_config | |
| from ldm.models.diffusion.ddim import DDIMSampler | |
| from ldm.modules.ema import LitEma | |
| from contextlib import contextmanager, nullcontext | |
| from cldm.model import load_state_dict | |
| import numpy as np | |
| from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, OneCycleLR | |
| def disabled_train(self, mode=True): | |
| """Overwrite model.train with this function to make sure train/eval mode | |
| does not change anymore.""" | |
| return self | |
| class ControlledUnetModel(UNetModel): | |
| def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs): | |
| hs = [] | |
| with torch.no_grad(): | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
| emb = self.time_embed(t_emb) | |
| h = x.type(self.dtype) | |
| for module in self.input_blocks: | |
| h = module(h, emb, context) | |
| hs.append(h) | |
| h = self.middle_block(h, emb, context) | |
| if control is not None: | |
| h += control.pop() | |
| for i, module in enumerate(self.output_blocks): | |
| if only_mid_control or control is None: | |
| h = torch.cat([h, hs.pop()], dim=1) | |
| else: | |
| h = torch.cat([h, hs.pop() + control.pop()], dim=1) | |
| h = module(h, emb, context) | |
| h = h.type(x.dtype) | |
| return self.out(h) | |
| class ControlNet(nn.Module): | |
| def __init__( | |
| self, | |
| image_size, | |
| in_channels, | |
| model_channels, | |
| hint_channels, | |
| num_res_blocks, | |
| attention_resolutions, | |
| dropout=0, | |
| channel_mult=(1, 2, 4, 8), | |
| conv_resample=True, | |
| dims=2, | |
| use_checkpoint=False, | |
| use_fp16=False, | |
| num_heads=-1, | |
| num_head_channels=-1, | |
| num_heads_upsample=-1, | |
| use_scale_shift_norm=False, | |
| resblock_updown=False, | |
| use_new_attention_order=False, | |
| use_spatial_transformer=False, # custom transformer support | |
| transformer_depth=1, # custom transformer support | |
| context_dim=None, # custom transformer support | |
| n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
| legacy=True, | |
| disable_self_attentions=None, | |
| num_attention_blocks=None, | |
| disable_middle_self_attn=False, | |
| use_linear_in_transformer=False, | |
| ): | |
| super().__init__() | |
| if use_spatial_transformer: | |
| assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
| if context_dim is not None: | |
| assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
| from omegaconf.listconfig import ListConfig | |
| if type(context_dim) == ListConfig: | |
| context_dim = list(context_dim) | |
| if num_heads_upsample == -1: | |
| num_heads_upsample = num_heads | |
| if num_heads == -1: | |
| assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
| if num_head_channels == -1: | |
| assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
| self.dims = dims | |
| self.image_size = image_size | |
| self.in_channels = in_channels | |
| self.model_channels = model_channels | |
| if isinstance(num_res_blocks, int): | |
| self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
| else: | |
| if len(num_res_blocks) != len(channel_mult): | |
| raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
| "as a list/tuple (per-level) with the same length as channel_mult") | |
| self.num_res_blocks = num_res_blocks | |
| if disable_self_attentions is not None: | |
| # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
| assert len(disable_self_attentions) == len(channel_mult) | |
| if num_attention_blocks is not None: | |
| assert len(num_attention_blocks) == len(self.num_res_blocks) | |
| assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
| print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
| f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
| f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
| f"attention will still not be set.") | |
| self.attention_resolutions = attention_resolutions | |
| self.dropout = dropout | |
| self.channel_mult = channel_mult | |
| self.conv_resample = conv_resample | |
| self.use_checkpoint = use_checkpoint | |
| self.dtype = th.float16 if use_fp16 else th.float32 | |
| self.num_heads = num_heads | |
| self.num_head_channels = num_head_channels | |
| self.num_heads_upsample = num_heads_upsample | |
| self.predict_codebook_ids = n_embed is not None | |
| time_embed_dim = model_channels * 4 | |
| self.time_embed = nn.Sequential( | |
| linear(model_channels, time_embed_dim), | |
| nn.SiLU(), | |
| linear(time_embed_dim, time_embed_dim), | |
| ) | |
| self.input_blocks = nn.ModuleList( | |
| [ | |
| TimestepEmbedSequential( | |
| conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
| ) | |
| ] | |
| ) | |
| self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) | |
| self.input_hint_block = TimestepEmbedSequential( | |
| conv_nd(dims, hint_channels, 16, 3, padding=1), | |
| nn.SiLU(), | |
| conv_nd(dims, 16, 16, 3, padding=1), | |
| nn.SiLU(), | |
| conv_nd(dims, 16, 32, 3, padding=1, stride=2), | |
| nn.SiLU(), | |
| conv_nd(dims, 32, 32, 3, padding=1), | |
| nn.SiLU(), | |
| conv_nd(dims, 32, 96, 3, padding=1, stride=2), | |
| nn.SiLU(), | |
| conv_nd(dims, 96, 96, 3, padding=1), | |
| nn.SiLU(), | |
| conv_nd(dims, 96, 256, 3, padding=1, stride=2), | |
| nn.SiLU(), | |
| zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) | |
| ) | |
| self._feature_size = model_channels | |
| input_block_chans = [model_channels] | |
| ch = model_channels | |
| ds = 1 | |
| for level, mult in enumerate(channel_mult): | |
| for nr in range(self.num_res_blocks[level]): | |
| layers = [ | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=mult * model_channels, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ) | |
| ] | |
| ch = mult * model_channels | |
| if ds in attention_resolutions: | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| # num_heads = 1 | |
| dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
| if exists(disable_self_attentions): | |
| disabled_sa = disable_self_attentions[level] | |
| else: | |
| disabled_sa = False | |
| if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
| layers.append( | |
| AttentionBlock( | |
| ch, | |
| use_checkpoint=use_checkpoint, | |
| num_heads=num_heads, | |
| num_head_channels=dim_head, | |
| use_new_attention_order=use_new_attention_order, | |
| ) if not use_spatial_transformer else SpatialTransformer( | |
| ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
| disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
| use_checkpoint=use_checkpoint | |
| ) | |
| ) | |
| self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
| self.zero_convs.append(self.make_zero_conv(ch)) | |
| self._feature_size += ch | |
| input_block_chans.append(ch) | |
| if level != len(channel_mult) - 1: | |
| out_ch = ch | |
| self.input_blocks.append( | |
| TimestepEmbedSequential( | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| out_channels=out_ch, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| down=True, | |
| ) | |
| if resblock_updown | |
| else Downsample( | |
| ch, conv_resample, dims=dims, out_channels=out_ch | |
| ) | |
| ) | |
| ) | |
| ch = out_ch | |
| input_block_chans.append(ch) | |
| self.zero_convs.append(self.make_zero_conv(ch)) | |
| ds *= 2 | |
| self._feature_size += ch | |
| if num_head_channels == -1: | |
| dim_head = ch // num_heads | |
| else: | |
| num_heads = ch // num_head_channels | |
| dim_head = num_head_channels | |
| if legacy: | |
| # num_heads = 1 | |
| dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
| self.middle_block = TimestepEmbedSequential( | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ), | |
| AttentionBlock( | |
| ch, | |
| use_checkpoint=use_checkpoint, | |
| num_heads=num_heads, | |
| num_head_channels=dim_head, | |
| use_new_attention_order=use_new_attention_order, | |
| ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn | |
| ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
| disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
| use_checkpoint=use_checkpoint | |
| ), | |
| ResBlock( | |
| ch, | |
| time_embed_dim, | |
| dropout, | |
| dims=dims, | |
| use_checkpoint=use_checkpoint, | |
| use_scale_shift_norm=use_scale_shift_norm, | |
| ), | |
| ) | |
| self.middle_block_out = self.make_zero_conv(ch) | |
| self._feature_size += ch | |
| def make_zero_conv(self, channels): | |
| return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) | |
| def forward(self, x, hint, timesteps, context, **kwargs): | |
| t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
| emb = self.time_embed(t_emb) | |
| guided_hint = self.input_hint_block(hint, emb, context) | |
| outs = [] | |
| h = x.type(self.dtype) | |
| for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
| if guided_hint is not None: | |
| h = module(h, emb, context) | |
| h += guided_hint | |
| guided_hint = None | |
| else: | |
| h = module(h, emb, context) | |
| outs.append(zero_conv(h, emb, context)) | |
| h = self.middle_block(h, emb, context) | |
| outs.append(self.middle_block_out(h, emb, context)) | |
| return outs | |
| class ControlLDM(LatentDiffusion): | |
| def __init__(self, | |
| control_stage_config, | |
| control_key, only_mid_control, | |
| learnable_conscale = False, guess_mode=False, | |
| sd_locked = True, sep_lr = False, decoder_lr = 1.0**-4, | |
| sep_cond_txt = True, exchange_cond_txt = False, concat_all_textemb = False, | |
| *args, **kwargs | |
| ): | |
| use_ema = kwargs.pop("use_ema", False) | |
| ckpt_path = kwargs.pop("ckpt_path", None) | |
| reset_ema = kwargs.pop("reset_ema", False) | |
| only_model= kwargs.pop("only_model", False) | |
| reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False) | |
| keep_num_ema_updates = kwargs.pop("keep_num_ema_updates", False) | |
| ignore_keys = kwargs.pop("ignore_keys", []) | |
| super().__init__(*args, use_ema=False, **kwargs) | |
| # Glyph ControlNet | |
| self.control_model = instantiate_from_config(control_stage_config) | |
| self.control_key = control_key | |
| self.only_mid_control = only_mid_control | |
| self.learnable_conscale = learnable_conscale | |
| conscale_init = [1.0] * 13 if not guess_mode else [(0.825 ** float(12 - i)) for i in range(13)] | |
| if learnable_conscale: | |
| # self.control_scales = nn.Parameter(torch.ones(13), requires_grad=True) | |
| self.control_scales = nn.Parameter(torch.Tensor(conscale_init), requires_grad=True) | |
| else: | |
| self.control_scales = conscale_init #[1.0] * 13 | |
| self.optimizer = torch.optim.AdamW | |
| # whether to unlock (fine-tune) the decoder parts of SD U-Net | |
| self.sd_locked = sd_locked | |
| self.sep_lr = sep_lr | |
| self.decoder_lr = decoder_lr | |
| # specify the input text embedding of two branches (SD branch and Glyph ControlNet branch) | |
| self.sep_cond_txt = sep_cond_txt | |
| self.concat_all_textemb = concat_all_textemb | |
| self.exchange_cond_txt = exchange_cond_txt | |
| # ema | |
| self.use_ema = use_ema | |
| if self.use_ema: | |
| self.model_ema = LitEma(self.control_model, init_num_updates= 0) | |
| print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
| if not self.sd_locked: | |
| self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= 0) | |
| print(f"Keeping diffoutblock EMAs of {len(list(self.model_diffoutblock_ema.buffers()))}.") | |
| self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= 0) | |
| print(f"Keeping diffout EMAs of {len(list(self.model_diffout_ema.buffers()))}.") | |
| # initialize the model from the checkpoint | |
| if ckpt_path is not None: | |
| ema_num_updates = self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model) | |
| self.restarted_from_ckpt = True | |
| if self.use_ema and reset_ema: | |
| print( | |
| f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.") | |
| self.model_ema = LitEma(self.control_model, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
| if not self.sd_locked: | |
| self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
| self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) | |
| if reset_num_ema_updates: | |
| print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ") | |
| assert self.use_ema | |
| self.model_ema.reset_num_updates() | |
| if not self.sd_locked: # Update | |
| self.model_diffoutblock_ema.reset_num_updates() | |
| self.model_diffout_ema.reset_num_updates() | |
| def ema_scope(self, context=None): | |
| if self.use_ema: # TODO: fix the bug while adding transemb_model or trainable control scales | |
| self.model_ema.store(self.control_model.parameters()) | |
| self.model_ema.copy_to(self.control_model) | |
| if not self.sd_locked: # Update | |
| self.model_diffoutblock_ema.store(self.model.diffusion_model.output_blocks.parameters()) | |
| self.model_diffoutblock_ema.copy_to(self.model.diffusion_model.output_blocks) | |
| self.model_diffout_ema.store(self.model.diffusion_model.out.parameters()) | |
| self.model_diffout_ema.copy_to(self.model.diffusion_model.out) | |
| if context is not None: | |
| print(f"{context}: Switched ControlNet to EMA weights") | |
| try: | |
| yield None | |
| finally: | |
| if self.use_ema: | |
| self.model_ema.restore(self.control_model.parameters()) | |
| if not self.sd_locked: # Update | |
| self.model_diffoutblock_ema.restore(self.model.diffusion_model.output_blocks.parameters()) | |
| self.model_diffout_ema.restore(self.model.diffusion_model.out.parameters()) | |
| if context is not None: | |
| print(f"{context}: Restored training weights of ControlNet") | |
| def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): | |
| if path.endswith("model_states.pt"): | |
| sd = torch.load(path, map_location='cpu')["module"] | |
| else: | |
| # sd = load_state_dict(path, location='cpu') # abandoned | |
| sd = torch.load(path, map_location="cpu") | |
| if "state_dict" in list(sd.keys()): | |
| sd = sd["state_dict"] | |
| keys_ = list(sd.keys())[:] | |
| for k in keys_: | |
| if k.startswith("module."): | |
| nk = k[7:] | |
| sd[nk] = sd[k] | |
| del sd[k] | |
| keys = list(sd.keys()) | |
| for k in keys: | |
| for ik in ignore_keys: | |
| if k.startswith(ik): | |
| print("Deleting key {} from state_dict.".format(k)) | |
| del sd[k] | |
| missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( | |
| sd, strict=False) | |
| print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") | |
| if len(missing) > 0: | |
| print(f"Missing Keys:\n {missing}") | |
| if len(unexpected) > 0: | |
| print(f"\nUnexpected Keys:\n {unexpected}") | |
| if "model_ema.num_updates" in sd and "model_ema.num_updates" not in unexpected: | |
| return sd["model_ema.num_updates"].item() | |
| else: | |
| return 0 | |
| def get_input(self, batch, k, bs=None, *args, **kwargs): | |
| x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs) | |
| control = batch[self.control_key] | |
| if bs is not None: | |
| control = control[:bs] | |
| control = control.to(self.device) | |
| control = einops.rearrange(control, 'b h w c -> b c h w') | |
| control = control.to(memory_format=torch.contiguous_format).float() | |
| return x, dict(c_crossattn=[c] if not isinstance(c, list) else c, c_concat=[control]) | |
| def apply_model(self, x_noisy, t, cond, *args, **kwargs): | |
| assert isinstance(cond, dict) | |
| diffusion_model = self.model.diffusion_model | |
| cond_txt_list = cond["c_crossattn"] | |
| assert len(cond_txt_list) > 0 | |
| # cond_txt: input text embedding of the pretrained SD branch | |
| # cond_txt_2: input text embedding of the Glyph ControlNet branch | |
| cond_txt = cond_txt_list[0] | |
| if len(cond_txt_list) == 1: | |
| cond_txt_2 = None | |
| else: | |
| if self.sep_cond_txt: | |
| # use each embedding for each branch separately | |
| cond_txt_2 = cond_txt_list[1] | |
| else: | |
| # concat the embedding for Glyph ControlNet branch | |
| if not self.concat_all_textemb: | |
| cond_txt_2 = torch.cat(cond_txt_list[1:], 1) | |
| else: | |
| cond_txt_2 = torch.cat(cond_txt_list, 1) | |
| if self.exchange_cond_txt: | |
| # exchange the input text embedding of two branches | |
| txt_buffer = cond_txt | |
| cond_txt = cond_txt_2 | |
| cond_txt_2 = txt_buffer | |
| if cond['c_concat'] is None: | |
| eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control) | |
| else: | |
| control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt if cond_txt_2 is None else cond_txt_2) | |
| control = [c * scale for c, scale in zip(control, self.control_scales)] | |
| eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control) | |
| return eps | |
| def get_unconditional_conditioning(self, N): | |
| return self.get_learned_conditioning([""] * N) | |
| def training_step(self, batch, batch_idx, optimizer_idx=0): | |
| loss = super().training_step(batch, batch_idx, optimizer_idx) | |
| if self.use_scheduler and not self.sd_locked and self.sep_lr: | |
| decoder_lr = self.optimizers().param_groups[1]["lr"] | |
| self.log('decoder_lr_abs', decoder_lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
| return loss | |
| def configure_optimizers(self): | |
| lr = self.learning_rate | |
| params = list(self.control_model.parameters()) | |
| if self.learnable_conscale: | |
| params += [self.control_scales] | |
| params_wlr = [] | |
| decoder_params = None | |
| if not self.sd_locked: | |
| decoder_params = list(self.model.diffusion_model.output_blocks.parameters()) | |
| decoder_params += list(self.model.diffusion_model.out.parameters()) | |
| if not self.sep_lr: | |
| params.extend(decoder_params) | |
| decoder_params = None | |
| params_wlr.append({"params": params, "lr": lr}) | |
| if decoder_params is not None: | |
| params_wlr.append({"params": decoder_params, "lr": self.decoder_lr}) | |
| # opt = torch.optim.AdamW(params_wlr) | |
| opt = self.optimizer(params_wlr) | |
| opts = [opt] | |
| # updated | |
| schedulers = [] | |
| if self.use_scheduler: | |
| assert 'target' in self.scheduler_config | |
| scheduler_func = instantiate_from_config(self.scheduler_config) | |
| print("Setting up LambdaLR scheduler...") | |
| schedulers = [ | |
| { | |
| 'scheduler': LambdaLR( | |
| opt, | |
| lr_lambda= [scheduler_func.schedule] * len(params_wlr) #if not self.sep_lr else [scheduler_func.schedule, scheduler_func.schedule] | |
| ), | |
| 'interval': 'step', | |
| 'frequency': 1 | |
| }] | |
| return opts, schedulers | |
| def low_vram_shift(self, is_diffusing): | |
| if is_diffusing: | |
| self.model = self.model.cuda() | |
| self.control_model = self.control_model.cuda() | |
| self.first_stage_model = self.first_stage_model.cpu() | |
| self.cond_stage_model = self.cond_stage_model.cpu() | |
| else: | |
| self.model = self.model.cpu() | |
| self.control_model = self.control_model.cpu() | |
| self.first_stage_model = self.first_stage_model.cuda() | |
| self.cond_stage_model = self.cond_stage_model.cuda() | |
| # ema | |
| def on_train_batch_end(self, *args, **kwargs): | |
| if self.use_ema: | |
| self.model_ema(self.control_model) | |
| if not self.sd_locked: # Update | |
| self.model_diffoutblock_ema(self.model.diffusion_model.output_blocks) | |
| self.model_diffout_ema(self.model.diffusion_model.out) | |
| if self.log_all_grad_norm: | |
| zeroconvs = list(self.control_model.input_hint_block.named_parameters())[-2:] | |
| zeroconvs.extend( | |
| list(self.control_model.zero_convs.named_parameters()) | |
| ) | |
| for item in zeroconvs: | |
| self.log( | |
| "zero_convs/{}_norm".format(item[0]), | |
| item[1].cpu().detach().norm().item(), | |
| prog_bar=False, logger=True, on_step=True, on_epoch=False | |
| ) | |
| self.log( | |
| "zero_convs/{}_max".format(item[0]), | |
| torch.max(item[1].cpu().detach()).item(), #TODO: lack torch.abs | |
| prog_bar=False, logger=True, on_step=True, on_epoch=False | |
| ) | |
| gradnorm_list = [] | |
| for param_group in self.trainer.optimizers[0].param_groups: | |
| for p in param_group['params']: | |
| # assert p.requires_grad and p.grad is not None | |
| if p.requires_grad and p.grad is not None: | |
| grad_norm_v = p.grad.cpu().detach().norm().item() | |
| gradnorm_list.append(grad_norm_v) | |
| if len(gradnorm_list): | |
| self.log("all_gradients/grad_norm_mean", | |
| np.mean(gradnorm_list), | |
| prog_bar=False, logger=True, on_step=True, on_epoch=False | |
| ) | |
| self.log("all_gradients/grad_norm_max", | |
| np.max(gradnorm_list), | |
| prog_bar=False, logger=True, on_step=True, on_epoch=False | |
| ) | |
| self.log("all_gradients/grad_norm_min", | |
| np.min(gradnorm_list), | |
| prog_bar=False, logger=True, on_step=True, on_epoch=False | |
| ) | |
| self.log("all_gradients/param_num", | |
| len(gradnorm_list), | |
| prog_bar=False, logger=True, on_step=True, on_epoch=False | |
| ) | |
| if self.learnable_conscale: | |
| for i in range(len(self.control_scales)): | |
| self.log( | |
| "control_scale/control_{}".format(i), | |
| self.control_scales[i], | |
| prog_bar=False, logger=True, on_step=True, on_epoch=False | |
| ) | |
| del gradnorm_list | |
| del zeroconvs | |