Spaces:
Runtime error
Runtime error
| # based on https://github.com/isl-org/MiDaS | |
| import cv2 | |
| import torch | |
| import torch.nn as nn | |
| from torchvision.transforms import Compose | |
| from ldm.modules.midas.midas.dpt_depth import DPTDepthModel | |
| from ldm.modules.midas.midas.midas_net import MidasNet | |
| from ldm.modules.midas.midas.midas_net_custom import MidasNet_small | |
| from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet | |
| ISL_PATHS = { | |
| "dpt_large": "midas_models/dpt_large-midas-2f21e586.pt", | |
| "dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt", | |
| "midas_v21": "", | |
| "midas_v21_small": "", | |
| } | |
| def disabled_train(self, mode=True): | |
| """Overwrite model.train with this function to make sure train/eval mode | |
| does not change anymore.""" | |
| return self | |
| def load_midas_transform(model_type): | |
| # https://github.com/isl-org/MiDaS/blob/master/run.py | |
| # load transform only | |
| if model_type == "dpt_large": # DPT-Large | |
| net_w, net_h = 384, 384 | |
| resize_mode = "minimal" | |
| normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
| elif model_type == "dpt_hybrid": # DPT-Hybrid | |
| net_w, net_h = 384, 384 | |
| resize_mode = "minimal" | |
| normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
| elif model_type == "midas_v21": | |
| net_w, net_h = 384, 384 | |
| resize_mode = "upper_bound" | |
| normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
| elif model_type == "midas_v21_small": | |
| net_w, net_h = 256, 256 | |
| resize_mode = "upper_bound" | |
| normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
| else: | |
| assert False, f"model_type '{model_type}' not implemented, use: --model_type large" | |
| transform = Compose( | |
| [ | |
| Resize( | |
| net_w, | |
| net_h, | |
| resize_target=None, | |
| keep_aspect_ratio=True, | |
| ensure_multiple_of=32, | |
| resize_method=resize_mode, | |
| image_interpolation_method=cv2.INTER_CUBIC, | |
| ), | |
| normalization, | |
| PrepareForNet(), | |
| ] | |
| ) | |
| return transform | |
| def load_model(model_type): | |
| # https://github.com/isl-org/MiDaS/blob/master/run.py | |
| # load network | |
| model_path = ISL_PATHS[model_type] | |
| if model_type == "dpt_large": # DPT-Large | |
| model = DPTDepthModel( | |
| path=model_path, | |
| backbone="vitl16_384", | |
| non_negative=True, | |
| ) | |
| net_w, net_h = 384, 384 | |
| resize_mode = "minimal" | |
| normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
| elif model_type == "dpt_hybrid": # DPT-Hybrid | |
| model = DPTDepthModel( | |
| path=model_path, | |
| backbone="vitb_rn50_384", | |
| non_negative=True, | |
| ) | |
| net_w, net_h = 384, 384 | |
| resize_mode = "minimal" | |
| normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
| elif model_type == "midas_v21": | |
| model = MidasNet(model_path, non_negative=True) | |
| net_w, net_h = 384, 384 | |
| resize_mode = "upper_bound" | |
| normalization = NormalizeImage( | |
| mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
| ) | |
| elif model_type == "midas_v21_small": | |
| model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, | |
| non_negative=True, blocks={'expand': True}) | |
| net_w, net_h = 256, 256 | |
| resize_mode = "upper_bound" | |
| normalization = NormalizeImage( | |
| mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
| ) | |
| else: | |
| print(f"model_type '{model_type}' not implemented, use: --model_type large") | |
| assert False | |
| transform = Compose( | |
| [ | |
| Resize( | |
| net_w, | |
| net_h, | |
| resize_target=None, | |
| keep_aspect_ratio=True, | |
| ensure_multiple_of=32, | |
| resize_method=resize_mode, | |
| image_interpolation_method=cv2.INTER_CUBIC, | |
| ), | |
| normalization, | |
| PrepareForNet(), | |
| ] | |
| ) | |
| return model.eval(), transform | |
| class MiDaSInference(nn.Module): | |
| MODEL_TYPES_TORCH_HUB = [ | |
| "DPT_Large", | |
| "DPT_Hybrid", | |
| "MiDaS_small" | |
| ] | |
| MODEL_TYPES_ISL = [ | |
| "dpt_large", | |
| "dpt_hybrid", | |
| "midas_v21", | |
| "midas_v21_small", | |
| ] | |
| def __init__(self, model_type): | |
| super().__init__() | |
| assert (model_type in self.MODEL_TYPES_ISL) | |
| model, _ = load_model(model_type) | |
| self.model = model | |
| self.model.train = disabled_train | |
| def forward(self, x): | |
| # x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array | |
| # NOTE: we expect that the correct transform has been called during dataloading. | |
| with torch.no_grad(): | |
| prediction = self.model(x) | |
| prediction = torch.nn.functional.interpolate( | |
| prediction.unsqueeze(1), | |
| size=x.shape[2:], | |
| mode="bicubic", | |
| align_corners=False, | |
| ) | |
| assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3]) | |
| return prediction | |