Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from audio_foundation_models import *
|
|
6 |
import gradio as gr
|
7 |
|
8 |
_DESCRIPTION = '# [AudioGPT](https://github.com/AIGC-Audio/AudioGPT)'
|
9 |
-
_DESCRIPTION += '\n<p>This is a demo to the work <a href="https://github.com/AIGC-Audio/AudioGPT" style="text-decoration: underline;" target="_blank">AudioGPT:
|
10 |
_DESCRIPTION += '\n<p>This model can only be used for non-commercial purposes.'
|
11 |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
|
12 |
_DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
@@ -43,23 +43,19 @@ Previous conversation history:
|
|
43 |
New input: {input}
|
44 |
Thought: Do I need to use a tool? {agent_scratchpad}"""
|
45 |
|
46 |
-
|
47 |
-
def cut_dialogue_history(history_memory, keep_last_n_words=400):
|
48 |
-
if history_memory is None or len(history_memory) == 0:
|
49 |
-
return history_memory
|
50 |
tokens = history_memory.split()
|
51 |
n_tokens = len(tokens)
|
52 |
print(f"history_memory:{history_memory}, n_tokens: {n_tokens}")
|
53 |
if n_tokens < keep_last_n_words:
|
54 |
return history_memory
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
last_n_tokens
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
class ConversationBot:
|
65 |
def __init__(self, load_dict):
|
@@ -69,6 +65,11 @@ class ConversationBot:
|
|
69 |
self.models = dict()
|
70 |
for class_name, device in load_dict.items():
|
71 |
self.models[class_name] = globals()[class_name](device=device)
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def run_text(self, text, state):
|
74 |
print("===============Running run_text =============")
|
@@ -81,7 +82,7 @@ class ConversationBot:
|
|
81 |
response = res['output']
|
82 |
state = state + [(text, response)]
|
83 |
print("Outputs:", state)
|
84 |
-
return state, state, gr.Audio.update(visible=False), gr.
|
85 |
else:
|
86 |
tool = res['intermediate_steps'][0][0].tool
|
87 |
if tool == "Generate Image From User Input Text":
|
@@ -90,14 +91,14 @@ class ConversationBot:
|
|
90 |
state = state + [(text, response)]
|
91 |
print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n"
|
92 |
f"Current Memory: {self.agent.memory.buffer}")
|
93 |
-
return state, state, gr.Audio.update(visible=False), gr.
|
94 |
elif tool == "Detect The Sound Event From The Audio":
|
95 |
image_filename = res['intermediate_steps'][0][1]
|
96 |
response = res['output'] + f"*{image_filename}*"
|
97 |
state = state + [(text, response)]
|
98 |
print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n"
|
99 |
f"Current Memory: {self.agent.memory.buffer}")
|
100 |
-
return state, state, gr.Audio.update(visible=False), gr.
|
101 |
elif tool == "Generate Text From The Audio" or tool == "Transcribe speech" or tool == "Target Sound Detection":
|
102 |
print("======>Current memory:\n %s" % self.agent.memory)
|
103 |
response = re.sub('(image/\S*png)', lambda m: f'})*{m.group(0)}*', res['output'])
|
@@ -105,21 +106,22 @@ class ConversationBot:
|
|
105 |
#response = res['output'] + f"*{image_filename}*"
|
106 |
state = state + [(text, response)]
|
107 |
print("Outputs:", state)
|
108 |
-
return state, state, gr.Audio.update(visible=False), gr.
|
109 |
elif tool == "Audio Inpainting":
|
110 |
audio_filename = res['intermediate_steps'][0][0].tool_input
|
111 |
image_filename = res['intermediate_steps'][0][1]
|
112 |
print("======>Current memory:\n %s" % self.agent.memory)
|
|
|
113 |
response = res['output']
|
114 |
state = state + [(text, response)]
|
115 |
print("Outputs:", state)
|
116 |
-
return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.
|
117 |
print("======>Current memory:\n %s" % self.agent.memory)
|
118 |
response = re.sub('(image/\S*png)', lambda m: f'})*{m.group(0)}*', res['output'])
|
119 |
audio_filename = res['intermediate_steps'][0][1]
|
120 |
state = state + [(text, response)]
|
121 |
print("Outputs:", state)
|
122 |
-
return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.
|
123 |
|
124 |
def run_image_or_audio(self, file, state, txt):
|
125 |
file_type = file.name[-3:]
|
@@ -128,9 +130,8 @@ class ConversationBot:
|
|
128 |
print("Inputs:", file, state)
|
129 |
print("======>Previous memory:\n %s" % self.agent.memory)
|
130 |
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
|
131 |
-
|
132 |
-
audio_load,
|
133 |
-
soundfile.write(audio_filename, audio_load, samplerate = sr)
|
134 |
description = self.models['A2T'].inference(audio_filename)
|
135 |
Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \
|
136 |
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(audio_filename, description)
|
@@ -142,7 +143,7 @@ class ConversationBot:
|
|
142 |
#state = state + [(f"<audio src=audio_filename controls=controls></audio>*{audio_filename}*", AI_prompt)]
|
143 |
state = state + [(f"*{audio_filename}*", AI_prompt)]
|
144 |
print("Outputs:", state)
|
145 |
-
return state, state, gr.Audio.update(value=audio_filename,visible=True)
|
146 |
else:
|
147 |
# print("===============Running run_image =============")
|
148 |
# print("Inputs:", file, state)
|
@@ -168,69 +169,13 @@ class ConversationBot:
|
|
168 |
state = state + [(f"*{image_filename}*", AI_prompt)]
|
169 |
print(f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n"
|
170 |
f"Current Memory: {self.agent.memory.buffer}")
|
171 |
-
return state, state,
|
172 |
-
|
173 |
-
def speech(self, speech_input, state):
|
174 |
-
input_audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
|
175 |
-
text = self.models['ASR'].translate_english(speech_input)
|
176 |
-
print("Inputs:", text, state)
|
177 |
-
print("======>Previous memory:\n %s" % self.agent.memory)
|
178 |
-
self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
|
179 |
-
res = self.agent({"input": text})
|
180 |
-
if res['intermediate_steps'] == []:
|
181 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
182 |
-
response = res['output']
|
183 |
-
output_audio_filename = self.models['TTS'].inference(response)
|
184 |
-
state = state + [(text, response)]
|
185 |
-
print("Outputs:", state)
|
186 |
-
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False)
|
187 |
-
else:
|
188 |
-
tool = res['intermediate_steps'][0][0].tool
|
189 |
-
if tool == "Generate Image From User Input Text" or tool == "Generate Text From The Audio" or tool == "Target Sound Detection":
|
190 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
191 |
-
response = re.sub('(image/\S*png)', lambda m: f'})*{m.group(0)}*', res['output'])
|
192 |
-
output_audio_filename = self.models['TTS'].inference(res['output'])
|
193 |
-
state = state + [(text, response)]
|
194 |
-
print("Outputs:", state)
|
195 |
-
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False)
|
196 |
-
elif tool == "Transcribe Speech":
|
197 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
198 |
-
output_audio_filename = self.models['TTS'].inference(res['output'])
|
199 |
-
response = res['output']
|
200 |
-
state = state + [(text, response)]
|
201 |
-
print("Outputs:", state)
|
202 |
-
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False)
|
203 |
-
elif tool == "Detect The Sound Event From The Audio":
|
204 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
205 |
-
image_filename = res['intermediate_steps'][0][1]
|
206 |
-
output_audio_filename = self.models['TTS'].inference(res['output'])
|
207 |
-
response = res['output'] + f"*{image_filename}*"
|
208 |
-
state = state + [(text, response)]
|
209 |
-
print("Outputs:", state)
|
210 |
-
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False)
|
211 |
-
elif tool == "Generate a talking human portrait video given a input Audio":
|
212 |
-
video_filename = res['intermediate_steps'][0][1]
|
213 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
214 |
-
response = res['output']
|
215 |
-
output_audio_filename = self.models['TTS'].inference(res['output'])
|
216 |
-
state = state + [(text, response)]
|
217 |
-
print("Outputs:", state)
|
218 |
-
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(value=video_filename,visible=True)
|
219 |
-
print("======>Current memory:\n %s" % self.agent.memory)
|
220 |
-
response = re.sub('(image/\S*png)', lambda m: f'})*{m.group(0)}*', res['output'])
|
221 |
-
audio_filename = res['intermediate_steps'][0][1]
|
222 |
-
Res = "The audio file has been generated and the audio is "
|
223 |
-
output_audio_filename = merge_audio(self.models['TTS'].inference(Res), audio_filename)
|
224 |
-
print(output_audio_filename)
|
225 |
-
state = state + [(text, response)]
|
226 |
-
response = res['output']
|
227 |
-
print("Outputs:", state)
|
228 |
-
return gr.Audio.update(value=None), gr.Audio.update(value=output_audio_filename,visible=True), state, gr.Video.update(visible=False)
|
229 |
|
230 |
def inpainting(self, state, audio_filename, image_filename):
|
231 |
print("===============Running inpainting =============")
|
232 |
print("Inputs:", state)
|
233 |
print("======>Previous memory:\n %s" % self.agent.memory)
|
|
|
234 |
new_image_filename, new_audio_filename = self.models['Inpaint'].predict(audio_filename, image_filename)
|
235 |
AI_prompt = "Here are the predict audio and the mel spectrum." + f"*{new_audio_filename}*" + f"*{new_image_filename}*"
|
236 |
self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt
|
@@ -240,62 +185,33 @@ class ConversationBot:
|
|
240 |
return state, state, gr.Image.update(visible=False), gr.Audio.update(value=new_audio_filename, visible=True), gr.Button.update(visible=False)
|
241 |
def clear_audio(self):
|
242 |
return gr.Audio.update(value=None, visible=False)
|
243 |
-
def clear_input_audio(self):
|
244 |
-
return gr.Audio.update(value=None)
|
245 |
def clear_image(self):
|
246 |
return gr.Image.update(value=None, visible=False)
|
247 |
-
def clear_video(self):
|
248 |
-
return gr.Video.update(value=None, visible=False)
|
249 |
def clear_button(self):
|
250 |
return gr.Button.update(visible=False)
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
self.llm,
|
263 |
-
agent="conversational-react-description",
|
264 |
-
verbose=True,
|
265 |
-
memory=self.memory,
|
266 |
-
return_intermediate_steps=True,
|
267 |
-
agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, )
|
268 |
-
return gr.update(visible = False), gr.update(visible = True), gr.update(visible = True), gr.update(visible = False)
|
269 |
-
else:
|
270 |
-
for class_name, instance in self.models.items():
|
271 |
-
if class_name != 'T2A' and class_name != 'I2A' and class_name != 'Inpaint' and class_name != 'ASR' and class_name != 'SoundDetection' and class_name != 'Speech_Enh_SC' and class_name != 'Speech_SS':
|
272 |
-
for e in dir(instance):
|
273 |
-
if e.startswith('inference'):
|
274 |
-
func = getattr(instance, e)
|
275 |
-
self.tools.append(Tool(name=func.name, description=func.description, func=func))
|
276 |
-
|
277 |
-
self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
|
278 |
-
self.agent = initialize_agent(
|
279 |
-
self.tools,
|
280 |
-
self.llm,
|
281 |
-
agent="conversational-react-description",
|
282 |
-
verbose=True,
|
283 |
-
memory=self.memory,
|
284 |
-
return_intermediate_steps=True,
|
285 |
-
agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, )
|
286 |
-
return gr.update(visible = False), gr.update(visible = False), gr.update(visible = False), gr.update(visible = True)
|
287 |
|
288 |
|
289 |
|
290 |
if __name__ == '__main__':
|
291 |
bot = ConversationBot({'ImageCaptioning': 'cuda:0',
|
292 |
-
|
293 |
-
|
294 |
'TTS': 'cpu',
|
295 |
'T2S': 'cpu',
|
296 |
'ASR': 'cuda:0',
|
297 |
'A2T': 'cpu',
|
298 |
-
|
299 |
'SoundDetection': 'cpu',
|
300 |
'Binaural': 'cuda:0',
|
301 |
'SoundExtraction': 'cuda:0',
|
@@ -303,50 +219,37 @@ if __name__ == '__main__':
|
|
303 |
'Speech_Enh_SC': 'cuda:0',
|
304 |
'Speech_SS': 'cuda:0'
|
305 |
})
|
306 |
-
with gr.Blocks(css="#chatbot
|
307 |
-
|
308 |
-
gr.Markdown("## Audio ChatGPT")
|
309 |
-
chatbot = gr.Chatbot(elem_id="chatbot", label="Audio ChatGPT", visible=False)
|
310 |
-
state = gr.State([])
|
311 |
|
312 |
-
with gr.Row()
|
313 |
-
with gr.Column(scale=0.7):
|
314 |
-
interaction_type = gr.Radio(choices=['text', 'speech'], value='text', label='Interaction Type')
|
315 |
openai_api_key_textbox = gr.Textbox(
|
316 |
-
placeholder="Paste your OpenAI API key here to start
|
317 |
show_label=False,
|
318 |
lines=1,
|
319 |
type="password",
|
320 |
)
|
321 |
-
|
|
|
|
|
|
|
322 |
with gr.Column(scale=0.7):
|
323 |
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
|
324 |
with gr.Column(scale=0.1, min_width=0):
|
325 |
run = gr.Button("🏃♂️Run")
|
326 |
with gr.Column(scale=0.1, min_width=0):
|
327 |
-
|
328 |
with gr.Column(scale=0.1, min_width=0):
|
329 |
btn = gr.UploadButton("🖼️/🎙️ Upload", file_types=["image","audio"])
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
with gr.Row():
|
334 |
-
with gr.Column(
|
335 |
-
|
336 |
-
with gr.Row():
|
337 |
-
|
338 |
-
|
339 |
-
run_button = gr.Button("Predict Masked Place",visible=False)
|
340 |
-
|
341 |
-
with gr.Row(visible=False) as speech_input_raws:
|
342 |
-
with gr.Column(scale=0.7):
|
343 |
-
speech_input = gr.Audio(source="microphone", type="filepath", label="Input")
|
344 |
-
with gr.Column(scale=0.15, min_width=0):
|
345 |
-
submit_btn = gr.Button("🏃♂️submit")
|
346 |
-
with gr.Column(scale=0.15, min_width=0):
|
347 |
-
clear_speech = gr.Button("🔄Clear️")
|
348 |
-
with gr.Row():
|
349 |
-
speech_output = gr.Audio(label="Output",visible=False)
|
350 |
gr.Examples(
|
351 |
examples=["Generate a speech with text 'here we go'",
|
352 |
"Transcribe this speech",
|
@@ -363,27 +266,18 @@ if __name__ == '__main__':
|
|
363 |
inputs=txt
|
364 |
)
|
365 |
|
366 |
-
openai_api_key_textbox.submit(bot.init_agent, [openai_api_key_textbox
|
367 |
-
|
368 |
-
txt.submit(bot.run_text, [txt, state], [chatbot, state, outaudio, outvideo, show_mel, run_button])
|
369 |
txt.submit(lambda: "", None, txt)
|
370 |
-
run.click(bot.run_text, [txt, state], [chatbot, state, outaudio,
|
371 |
run.click(lambda: "", None, txt)
|
372 |
-
btn.upload(bot.run_image_or_audio, [btn, state, txt], [chatbot, state,
|
373 |
-
run_button.click(bot.inpainting, [state, outaudio, show_mel], [chatbot, state, show_mel, outaudio,
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
clear_txt.click(bot.clear_video, None, outvideo)
|
382 |
-
|
383 |
-
submit_btn.click(bot.speech, [speech_input, state], [speech_input, speech_output, state, outvideo])
|
384 |
-
clear_speech.click(bot.clear_input_audio, None, speech_input)
|
385 |
-
clear_speech.click(bot.clear_audio, None, speech_output)
|
386 |
-
clear_speech.click(lambda: [], None, state)
|
387 |
-
clear_speech.click(bot.clear_video, None, outvideo)
|
388 |
-
|
389 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
6 |
import gradio as gr
|
7 |
|
8 |
_DESCRIPTION = '# [AudioGPT](https://github.com/AIGC-Audio/AudioGPT)'
|
9 |
+
_DESCRIPTION += '\n<p>This is a demo to the work <a href="https://github.com/AIGC-Audio/AudioGPT" style="text-decoration: underline;" target="_blank">AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking Head</a>. </p>'
|
10 |
_DESCRIPTION += '\n<p>This model can only be used for non-commercial purposes.'
|
11 |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
|
12 |
_DESCRIPTION += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
|
|
43 |
New input: {input}
|
44 |
Thought: Do I need to use a tool? {agent_scratchpad}"""
|
45 |
|
46 |
+
def cut_dialogue_history(history_memory, keep_last_n_words = 500):
|
|
|
|
|
|
|
47 |
tokens = history_memory.split()
|
48 |
n_tokens = len(tokens)
|
49 |
print(f"history_memory:{history_memory}, n_tokens: {n_tokens}")
|
50 |
if n_tokens < keep_last_n_words:
|
51 |
return history_memory
|
52 |
+
else:
|
53 |
+
paragraphs = history_memory.split('\n')
|
54 |
+
last_n_tokens = n_tokens
|
55 |
+
while last_n_tokens >= keep_last_n_words:
|
56 |
+
last_n_tokens = last_n_tokens - len(paragraphs[0].split(' '))
|
57 |
+
paragraphs = paragraphs[1:]
|
58 |
+
return '\n' + '\n'.join(paragraphs)
|
|
|
59 |
|
60 |
class ConversationBot:
|
61 |
def __init__(self, load_dict):
|
|
|
65 |
self.models = dict()
|
66 |
for class_name, device in load_dict.items():
|
67 |
self.models[class_name] = globals()[class_name](device=device)
|
68 |
+
for class_name, instance in self.models.items():
|
69 |
+
for e in dir(instance):
|
70 |
+
if e.startswith('inference'):
|
71 |
+
func = getattr(instance, e)
|
72 |
+
self.tools.append(Tool(name=func.name, description=func.description, func=func))
|
73 |
|
74 |
def run_text(self, text, state):
|
75 |
print("===============Running run_text =============")
|
|
|
82 |
response = res['output']
|
83 |
state = state + [(text, response)]
|
84 |
print("Outputs:", state)
|
85 |
+
return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False)
|
86 |
else:
|
87 |
tool = res['intermediate_steps'][0][0].tool
|
88 |
if tool == "Generate Image From User Input Text":
|
|
|
91 |
state = state + [(text, response)]
|
92 |
print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n"
|
93 |
f"Current Memory: {self.agent.memory.buffer}")
|
94 |
+
return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False)
|
95 |
elif tool == "Detect The Sound Event From The Audio":
|
96 |
image_filename = res['intermediate_steps'][0][1]
|
97 |
response = res['output'] + f"*{image_filename}*"
|
98 |
state = state + [(text, response)]
|
99 |
print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n"
|
100 |
f"Current Memory: {self.agent.memory.buffer}")
|
101 |
+
return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False)
|
102 |
elif tool == "Generate Text From The Audio" or tool == "Transcribe speech" or tool == "Target Sound Detection":
|
103 |
print("======>Current memory:\n %s" % self.agent.memory)
|
104 |
response = re.sub('(image/\S*png)', lambda m: f'})*{m.group(0)}*', res['output'])
|
|
|
106 |
#response = res['output'] + f"*{image_filename}*"
|
107 |
state = state + [(text, response)]
|
108 |
print("Outputs:", state)
|
109 |
+
return state, state, gr.Audio.update(visible=False), gr.Image.update(visible=False), gr.Button.update(visible=False)
|
110 |
elif tool == "Audio Inpainting":
|
111 |
audio_filename = res['intermediate_steps'][0][0].tool_input
|
112 |
image_filename = res['intermediate_steps'][0][1]
|
113 |
print("======>Current memory:\n %s" % self.agent.memory)
|
114 |
+
print(res)
|
115 |
response = res['output']
|
116 |
state = state + [(text, response)]
|
117 |
print("Outputs:", state)
|
118 |
+
return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Image.update(value=image_filename,visible=True), gr.Button.update(visible=True)
|
119 |
print("======>Current memory:\n %s" % self.agent.memory)
|
120 |
response = re.sub('(image/\S*png)', lambda m: f'})*{m.group(0)}*', res['output'])
|
121 |
audio_filename = res['intermediate_steps'][0][1]
|
122 |
state = state + [(text, response)]
|
123 |
print("Outputs:", state)
|
124 |
+
return state, state, gr.Audio.update(value=audio_filename,visible=True), gr.Image.update(visible=False), gr.Button.update(visible=False)
|
125 |
|
126 |
def run_image_or_audio(self, file, state, txt):
|
127 |
file_type = file.name[-3:]
|
|
|
130 |
print("Inputs:", file, state)
|
131 |
print("======>Previous memory:\n %s" % self.agent.memory)
|
132 |
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
|
133 |
+
audio_load = whisper.load_audio(file.name)
|
134 |
+
soundfile.write(audio_filename, audio_load, samplerate = 16000)
|
|
|
135 |
description = self.models['A2T'].inference(audio_filename)
|
136 |
Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \
|
137 |
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(audio_filename, description)
|
|
|
143 |
#state = state + [(f"<audio src=audio_filename controls=controls></audio>*{audio_filename}*", AI_prompt)]
|
144 |
state = state + [(f"*{audio_filename}*", AI_prompt)]
|
145 |
print("Outputs:", state)
|
146 |
+
return state, state, txt + ' ' + audio_filename + ' ', gr.Audio.update(value=audio_filename,visible=True)
|
147 |
else:
|
148 |
# print("===============Running run_image =============")
|
149 |
# print("Inputs:", file, state)
|
|
|
169 |
state = state + [(f"*{image_filename}*", AI_prompt)]
|
170 |
print(f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n"
|
171 |
f"Current Memory: {self.agent.memory.buffer}")
|
172 |
+
return state, state, txt + f'{txt} {image_filename} ', gr.Audio.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
def inpainting(self, state, audio_filename, image_filename):
|
175 |
print("===============Running inpainting =============")
|
176 |
print("Inputs:", state)
|
177 |
print("======>Previous memory:\n %s" % self.agent.memory)
|
178 |
+
# inpaint = Inpaint(device="cpu")
|
179 |
new_image_filename, new_audio_filename = self.models['Inpaint'].predict(audio_filename, image_filename)
|
180 |
AI_prompt = "Here are the predict audio and the mel spectrum." + f"*{new_audio_filename}*" + f"*{new_image_filename}*"
|
181 |
self.agent.memory.buffer = self.agent.memory.buffer + 'AI: ' + AI_prompt
|
|
|
185 |
return state, state, gr.Image.update(visible=False), gr.Audio.update(value=new_audio_filename, visible=True), gr.Button.update(visible=False)
|
186 |
def clear_audio(self):
|
187 |
return gr.Audio.update(value=None, visible=False)
|
|
|
|
|
188 |
def clear_image(self):
|
189 |
return gr.Image.update(value=None, visible=False)
|
|
|
|
|
190 |
def clear_button(self):
|
191 |
return gr.Button.update(visible=False)
|
192 |
+
def init_agent(self, openai_api_key):
|
193 |
+
self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
|
194 |
+
self.agent = initialize_agent(
|
195 |
+
self.tools,
|
196 |
+
self.llm,
|
197 |
+
agent="conversational-react-description",
|
198 |
+
verbose=True,
|
199 |
+
memory=self.memory,
|
200 |
+
return_intermediate_steps=True,
|
201 |
+
agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, )
|
202 |
+
return gr.update(visible = True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
|
205 |
|
206 |
if __name__ == '__main__':
|
207 |
bot = ConversationBot({'ImageCaptioning': 'cuda:0',
|
208 |
+
'T2A': 'cuda:0',
|
209 |
+
'I2A': 'cuda:0',
|
210 |
'TTS': 'cpu',
|
211 |
'T2S': 'cpu',
|
212 |
'ASR': 'cuda:0',
|
213 |
'A2T': 'cpu',
|
214 |
+
'Inpaint': 'cuda:0',
|
215 |
'SoundDetection': 'cpu',
|
216 |
'Binaural': 'cuda:0',
|
217 |
'SoundExtraction': 'cuda:0',
|
|
|
219 |
'Speech_Enh_SC': 'cuda:0',
|
220 |
'Speech_SS': 'cuda:0'
|
221 |
})
|
222 |
+
with gr.Blocks(css="#chatbot {overflow:auto; height:500px;}") as demo:
|
223 |
+
gr.Markdown(_DESCRIPTION)
|
|
|
|
|
|
|
224 |
|
225 |
+
with gr.Row():
|
|
|
|
|
226 |
openai_api_key_textbox = gr.Textbox(
|
227 |
+
placeholder="Paste your OpenAI API key here to start AudioGPT(sk-...) and press Enter ↵️",
|
228 |
show_label=False,
|
229 |
lines=1,
|
230 |
type="password",
|
231 |
)
|
232 |
+
|
233 |
+
chatbot = gr.Chatbot(elem_id="chatbot", label="AudioGPT")
|
234 |
+
state = gr.State([])
|
235 |
+
with gr.Row(visible = False) as input_raws:
|
236 |
with gr.Column(scale=0.7):
|
237 |
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
|
238 |
with gr.Column(scale=0.1, min_width=0):
|
239 |
run = gr.Button("🏃♂️Run")
|
240 |
with gr.Column(scale=0.1, min_width=0):
|
241 |
+
clear = gr.Button("🔄Clear️")
|
242 |
with gr.Column(scale=0.1, min_width=0):
|
243 |
btn = gr.UploadButton("🖼️/🎙️ Upload", file_types=["image","audio"])
|
244 |
+
with gr.Row():
|
245 |
+
with gr.Column():
|
246 |
+
outaudio = gr.Audio(visible=False)
|
247 |
+
with gr.Row():
|
248 |
+
with gr.Column():
|
249 |
+
show_mel = gr.Image(type="filepath",tool='sketch',visible=False)
|
250 |
+
with gr.Row():
|
251 |
+
with gr.Column():
|
252 |
+
run_button = gr.Button("Predict Masked Place",visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
gr.Examples(
|
254 |
examples=["Generate a speech with text 'here we go'",
|
255 |
"Transcribe this speech",
|
|
|
266 |
inputs=txt
|
267 |
)
|
268 |
|
269 |
+
openai_api_key_textbox.submit(bot.init_agent, [openai_api_key_textbox], [input_raws])
|
270 |
+
txt.submit(bot.run_text, [txt, state], [chatbot, state, outaudio, show_mel, run_button])
|
|
|
271 |
txt.submit(lambda: "", None, txt)
|
272 |
+
run.click(bot.run_text, [txt, state], [chatbot, state, outaudio, show_mel, run_button])
|
273 |
run.click(lambda: "", None, txt)
|
274 |
+
btn.upload(bot.run_image_or_audio, [btn, state, txt], [chatbot, state, txt, outaudio])
|
275 |
+
run_button.click(bot.inpainting, [state, outaudio, show_mel], [chatbot, state, show_mel, outaudio, run_button])
|
276 |
+
clear.click(bot.memory.clear)
|
277 |
+
clear.click(lambda: [], None, chatbot)
|
278 |
+
clear.click(lambda: [], None, state)
|
279 |
+
clear.click(lambda:None, None, txt)
|
280 |
+
clear.click(bot.clear_button, None, run_button)
|
281 |
+
clear.click(bot.clear_image, None, show_mel)
|
282 |
+
clear.click(bot.clear_audio, None, outaudio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|