Spaces:
Runtime error
Runtime error
| """ | |
| Based on https://github.com/CompVis/taming-transformers/blob/52720829/taming/modules/losses/lpips.py | |
| Adapted for spectrograms by Vladimir Iashin (v-iashin) | |
| """ | |
| from collections import namedtuple | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import sys | |
| sys.path.insert(0, '.') # nopep8 | |
| from ldm.modules.losses_audio.vggishish.model import VGGishish | |
| from ldm.util import get_ckpt_path | |
| class LPAPS(nn.Module): | |
| # Learned perceptual metric | |
| def __init__(self, use_dropout=True): | |
| super().__init__() | |
| self.scaling_layer = ScalingLayer() | |
| self.chns = [64, 128, 256, 512, 512] # vggish16 features | |
| self.net = vggishish16(pretrained=True, requires_grad=False) | |
| self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) | |
| self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) | |
| self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) | |
| self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) | |
| self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) | |
| self.load_from_pretrained() | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def load_from_pretrained(self, name="vggishish_lpaps"): | |
| ckpt = get_ckpt_path(name, "ldm/modules/autoencoder/lpaps") | |
| self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) | |
| print("loaded pretrained LPAPS loss from {}".format(ckpt)) | |
| def from_pretrained(cls, name="vggishish_lpaps"): | |
| if name != "vggishish_lpaps": | |
| raise NotImplementedError | |
| model = cls() | |
| ckpt = get_ckpt_path(name) | |
| model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) | |
| return model | |
| def forward(self, input, target): | |
| in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target)) | |
| outs0, outs1 = self.net(in0_input), self.net(in1_input) | |
| feats0, feats1, diffs = {}, {}, {} | |
| lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] | |
| for kk in range(len(self.chns)): | |
| feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) | |
| diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 | |
| res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))] | |
| val = res[0] | |
| for l in range(1, len(self.chns)): | |
| val += res[l] | |
| return val | |
| class ScalingLayer(nn.Module): | |
| def __init__(self): | |
| super(ScalingLayer, self).__init__() | |
| # we are gonna use get_ckpt_path to donwload the stats as well | |
| stat_path = get_ckpt_path('vggishish_mean_std_melspec_10s_22050hz', 'ldm/modules/autoencoder/lpaps') | |
| # if for images we normalize on the channel dim, in spectrogram we will norm on frequency dimension | |
| means, stds = np.loadtxt(stat_path, dtype=np.float32).T | |
| # the normalization in means and stds are given for [0, 1], but specvqgan expects [-1, 1]: | |
| means = 2 * means - 1 | |
| stds = 2 * stds | |
| # input is expected to be (B, 1, F, T) | |
| self.register_buffer('shift', torch.from_numpy(means)[None, None, :, None]) | |
| self.register_buffer('scale', torch.from_numpy(stds)[None, None, :, None]) | |
| def forward(self, inp): | |
| return (inp - self.shift) / self.scale | |
| class NetLinLayer(nn.Module): | |
| """ A single linear layer which does a 1x1 conv """ | |
| def __init__(self, chn_in, chn_out=1, use_dropout=False): | |
| super(NetLinLayer, self).__init__() | |
| layers = [nn.Dropout(), ] if (use_dropout) else [] | |
| layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] | |
| self.model = nn.Sequential(*layers) | |
| class vggishish16(torch.nn.Module): | |
| def __init__(self, requires_grad=False, pretrained=True): | |
| super().__init__() | |
| vgg_pretrained_features = self.vggishish16(pretrained=pretrained).features | |
| self.slice1 = torch.nn.Sequential() | |
| self.slice2 = torch.nn.Sequential() | |
| self.slice3 = torch.nn.Sequential() | |
| self.slice4 = torch.nn.Sequential() | |
| self.slice5 = torch.nn.Sequential() | |
| self.N_slices = 5 | |
| for x in range(4): | |
| self.slice1.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(4, 9): | |
| self.slice2.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(9, 16): | |
| self.slice3.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(16, 23): | |
| self.slice4.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(23, 30): | |
| self.slice5.add_module(str(x), vgg_pretrained_features[x]) | |
| if not requires_grad: | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def forward(self, X): | |
| h = self.slice1(X) | |
| h_relu1_2 = h | |
| h = self.slice2(h) | |
| h_relu2_2 = h | |
| h = self.slice3(h) | |
| h_relu3_3 = h | |
| h = self.slice4(h) | |
| h_relu4_3 = h | |
| h = self.slice5(h) | |
| h_relu5_3 = h | |
| vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) | |
| out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) | |
| return out | |
| def vggishish16(self, pretrained: bool = True) -> VGGishish: | |
| # loading vggishish pretrained on vggsound | |
| num_classes_vggsound = 309 | |
| conv_layers = [64, 64, 'MP', 128, 128, 'MP', 256, 256, 256, 'MP', 512, 512, 512, 'MP', 512, 512, 512] | |
| model = VGGishish(conv_layers, use_bn=False, num_classes=num_classes_vggsound) | |
| if pretrained: | |
| ckpt_path = get_ckpt_path('vggishish_lpaps', "ldm/modules/autoencoder/lpaps") | |
| ckpt = torch.load(ckpt_path, map_location=torch.device("cpu")) | |
| model.load_state_dict(ckpt, strict=False) | |
| return model | |
| def normalize_tensor(x, eps=1e-10): | |
| norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True)) | |
| return x / (norm_factor+eps) | |
| def spatial_average(x, keepdim=True): | |
| return x.mean([2, 3], keepdim=keepdim) | |
| if __name__ == '__main__': | |
| inputs = torch.rand((16, 1, 80, 848)) | |
| reconstructions = torch.rand((16, 1, 80, 848)) | |
| lpips = LPAPS().eval() | |
| loss_p = lpips(inputs.contiguous(), reconstructions.contiguous()) | |
| # (16, 1, 1, 1) | |
| print(loss_p.shape) | |