Spaces:
Runtime error
Runtime error
| from torch import nn | |
| import copy | |
| import torch | |
| from utils.hparams import hparams | |
| from modules.GenerSpeech.model.wavenet import WN | |
| import math | |
| from modules.fastspeech.tts_modules import LayerNorm | |
| import torch.nn.functional as F | |
| from utils.tts_utils import group_hidden_by_segs, sequence_mask | |
| from scipy.cluster.vq import kmeans2 | |
| from torch.nn import functional as F | |
| class VQEmbeddingEMA(nn.Module): | |
| def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5, | |
| print_vq_prob=False): | |
| super(VQEmbeddingEMA, self).__init__() | |
| self.commitment_cost = commitment_cost | |
| self.n_embeddings = n_embeddings | |
| self.decay = decay | |
| self.epsilon = epsilon | |
| self.print_vq_prob = print_vq_prob | |
| self.register_buffer('data_initialized', torch.zeros(1)) | |
| init_bound = 1 / 512 | |
| embedding = torch.Tensor(n_embeddings, embedding_dim) | |
| embedding.uniform_(-init_bound, init_bound) | |
| self.register_buffer("embedding", embedding) | |
| self.register_buffer("ema_count", torch.zeros(n_embeddings)) | |
| self.register_buffer("ema_weight", self.embedding.clone()) | |
| def encode(self, x): | |
| B, T, _ = x.shape | |
| M, D = self.embedding.size() | |
| x_flat = x.detach().reshape(-1, D) | |
| distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) + | |
| torch.sum(x_flat ** 2, dim=1, keepdim=True), | |
| x_flat, self.embedding.t(), | |
| alpha=-2.0, beta=1.0) # [B*T_mel, N_vq] | |
| indices = torch.argmin(distances.float(), dim=-1) # [B*T_mel] | |
| quantized = F.embedding(indices, self.embedding) | |
| quantized = quantized.view_as(x) | |
| return x_flat, quantized, indices | |
| def forward(self, x): | |
| """ | |
| :param x: [B, T, D] | |
| :return: [B, T, D] | |
| """ | |
| B, T, _ = x.shape | |
| M, D = self.embedding.size() | |
| if self.training and self.data_initialized.item() == 0: | |
| print('| running kmeans in VQVAE') # data driven initialization for the embeddings | |
| x_flat = x.detach().reshape(-1, D) | |
| rp = torch.randperm(x_flat.size(0)) | |
| kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points') | |
| self.embedding.copy_(torch.from_numpy(kd[0])) | |
| x_flat, quantized, indices = self.encode(x) | |
| encodings = F.one_hot(indices, M).float() | |
| self.ema_weight.copy_(torch.matmul(encodings.t(), x_flat)) | |
| self.ema_count.copy_(torch.sum(encodings, dim=0)) | |
| x_flat, quantized, indices = self.encode(x) | |
| encodings = F.one_hot(indices, M).float() | |
| indices = indices.reshape(B, T) | |
| if self.training and self.data_initialized.item() != 0: | |
| self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0) | |
| n = torch.sum(self.ema_count) | |
| self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n | |
| dw = torch.matmul(encodings.t(), x_flat) | |
| self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw | |
| self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1) | |
| self.data_initialized.fill_(1) | |
| e_latent_loss = F.mse_loss(x, quantized.detach(), reduction='none') | |
| nonpadding = (x.abs().sum(-1) > 0).float() | |
| e_latent_loss = (e_latent_loss.mean(-1) * nonpadding).sum() / nonpadding.sum() | |
| loss = self.commitment_cost * e_latent_loss | |
| quantized = x + (quantized - x).detach() | |
| avg_probs = torch.mean(encodings, dim=0) | |
| perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) | |
| if self.print_vq_prob: | |
| print("| VQ code avg_probs: ", avg_probs) | |
| return quantized, loss, indices, perplexity | |
| class CrossAttenLayer(nn.Module): | |
| def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1): | |
| super(CrossAttenLayer, self).__init__() | |
| self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
| self.linear1 = nn.Linear(d_model, dim_feedforward) | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.norm1 = nn.LayerNorm(d_model) | |
| self.linear2 = nn.Linear(dim_feedforward, d_model) | |
| self.dropout2 = nn.Dropout(dropout) | |
| self.norm2 = nn.LayerNorm(d_model) | |
| self.activation = nn.ReLU() | |
| def forward(self, src, local_emotion, emotion_key_padding_mask=None, forcing=False): | |
| # src: (Tph, B, 256) local_emotion: (Temo, B, 256) emotion_key_padding_mask: (B, Temo) | |
| if forcing: | |
| maxlength = src.shape[0] | |
| k = local_emotion.shape[0] / src.shape[0] | |
| lengths1 = torch.ceil(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) + 1 | |
| lengths2 = torch.floor(torch.tensor([i for i in range(maxlength)]).to(src.device) * k) - 1 | |
| mask1 = sequence_mask(lengths1, local_emotion.shape[0]) | |
| mask2 = sequence_mask(lengths2, local_emotion.shape[0]) | |
| mask = mask1.float() - mask2.float() | |
| attn_emo = mask.repeat(src.shape[1], 1, 1) # (B, Tph, Temo) | |
| src2 = torch.matmul(local_emotion.permute(1, 2, 0), attn_emo.float().transpose(1, 2)).permute(2, 0, 1) | |
| else: | |
| src2, attn_emo = self.multihead_attn(src, local_emotion, local_emotion, key_padding_mask=emotion_key_padding_mask) | |
| src = src + self.dropout1(src2) | |
| src = self.norm1(src) | |
| src2 = self.linear2(self.activation(self.linear1(src))) | |
| src = src + self.dropout2(src2) | |
| src = self.norm2(src) | |
| return src, attn_emo | |
| class ProsodyAligner(nn.Module): | |
| def __init__(self, num_layers, guided_sigma=0.3, guided_layers=None, norm=None): | |
| super(ProsodyAligner, self).__init__() | |
| self.layers = nn.ModuleList([CrossAttenLayer(d_model=hparams['hidden_size'], nhead=2) for _ in range(num_layers)]) | |
| self.num_layers = num_layers | |
| self.norm = norm | |
| self.guided_sigma = guided_sigma | |
| self.guided_layers = guided_layers if guided_layers is not None else num_layers | |
| def forward(self, src, local_emotion, src_key_padding_mask=None, emotion_key_padding_mask=None, forcing=False): | |
| output = src | |
| guided_loss = 0 | |
| attn_emo_list = [] | |
| for i, mod in enumerate(self.layers): | |
| # output: (Tph, B, 256), global_emotion: (1, B, 256), local_emotion: (Temo, B, 256) mask: None, src_key_padding_mask: (B, Tph), | |
| # emotion_key_padding_mask: (B, Temo) | |
| output, attn_emo = mod(output, local_emotion, emotion_key_padding_mask=emotion_key_padding_mask, forcing=forcing) | |
| attn_emo_list.append(attn_emo.unsqueeze(1)) | |
| # attn_emo: (B, Tph, Temo) attn: (B, Tph, Tph) | |
| if i < self.guided_layers and src_key_padding_mask is not None: | |
| s_length = (~src_key_padding_mask).float().sum(-1) # B | |
| emo_length = (~emotion_key_padding_mask).float().sum(-1) | |
| attn_w_emo = _make_guided_attention_mask(src_key_padding_mask.size(-1), s_length, emotion_key_padding_mask.size(-1), emo_length, self.guided_sigma) | |
| g_loss_emo = attn_emo * attn_w_emo # N, L, S | |
| non_padding_mask = (~src_key_padding_mask).unsqueeze(-1) & (~emotion_key_padding_mask).unsqueeze(1) | |
| guided_loss = g_loss_emo[non_padding_mask].mean() + guided_loss | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| return output, guided_loss, attn_emo_list | |
| def _make_guided_attention_mask(ilen, rilen, olen, rolen, sigma): | |
| grid_x, grid_y = torch.meshgrid(torch.arange(ilen, device=rilen.device), torch.arange(olen, device=rolen.device)) | |
| grid_x = grid_x.unsqueeze(0).expand(rilen.size(0), -1, -1) | |
| grid_y = grid_y.unsqueeze(0).expand(rolen.size(0), -1, -1) | |
| rilen = rilen.unsqueeze(1).unsqueeze(1) | |
| rolen = rolen.unsqueeze(1).unsqueeze(1) | |
| return 1.0 - torch.exp( | |
| -((grid_y.float() / rolen - grid_x.float() / rilen) ** 2) / (2 * (sigma ** 2)) | |
| ) | |
| class LocalStyleAdaptor(nn.Module): | |
| def __init__(self, hidden_size, num_vq_codes=64, padding_idx=0): | |
| super(LocalStyleAdaptor, self).__init__() | |
| self.encoder = ConvBlocks(80, hidden_size, [1] * 5, 5, dropout=hparams['vae_dropout']) | |
| self.n_embed = num_vq_codes | |
| self.vqvae = VQEmbeddingEMA(self.n_embed, hidden_size, commitment_cost=hparams['lambda_commit']) | |
| self.wavenet = WN(hidden_channels=80, gin_channels=80, kernel_size=3, dilation_rate=1, n_layers=4) | |
| self.padding_idx = padding_idx | |
| self.hidden_size = hidden_size | |
| def forward(self, ref_mels, mel2ph=None, no_vq=False): | |
| """ | |
| :param ref_mels: [B, T, 80] | |
| :return: [B, 1, H] | |
| """ | |
| padding_mask = ref_mels[:, :, 0].eq(self.padding_idx).data | |
| ref_mels = self.wavenet(ref_mels.transpose(1, 2), x_mask=(~padding_mask).unsqueeze(1).repeat([1, 80, 1])).transpose(1, 2) | |
| if mel2ph is not None: | |
| ref_ph, _ = group_hidden_by_segs(ref_mels, mel2ph, torch.max(mel2ph)) | |
| else: | |
| ref_ph = ref_mels | |
| prosody = self.encoder(ref_ph) | |
| if no_vq: | |
| return prosody | |
| z, vq_loss, vq_tokens, ppl = self.vqvae(prosody) | |
| vq_loss = vq_loss.mean() | |
| return z, vq_loss, ppl | |
| class LambdaLayer(nn.Module): | |
| def __init__(self, lambd): | |
| super(LambdaLayer, self).__init__() | |
| self.lambd = lambd | |
| def forward(self, x): | |
| return self.lambd(x) | |
| class Conv1d(nn.Conv1d): | |
| """A wrapper around nn.Conv1d, that works on (batch, time, channels)""" | |
| def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, groups=1, bias=True, padding=0): | |
| super(Conv1d, self).__init__(in_channels=in_channels, out_channels=out_channels, | |
| kernel_size=kernel_size, stride=stride, dilation=dilation, | |
| groups=groups, bias=bias, padding=padding) | |
| def forward(self, x): | |
| return super().forward(x.transpose(2, 1)).transpose(2, 1) | |
| def init_weights_func(m): | |
| classname = m.__class__.__name__ | |
| if classname.find("Conv1d") != -1: | |
| torch.nn.init.xavier_uniform_(m.weight) | |
| class ResidualBlock(nn.Module): | |
| """Implements conv->PReLU->norm n-times""" | |
| def __init__(self, channels, kernel_size, dilation, n=2, norm_type='bn', dropout=0.0, | |
| c_multiple=2, ln_eps=1e-12): | |
| super(ResidualBlock, self).__init__() | |
| if norm_type == 'bn': | |
| norm_builder = lambda: nn.BatchNorm1d(channels) | |
| elif norm_type == 'in': | |
| norm_builder = lambda: nn.InstanceNorm1d(channels, affine=True) | |
| elif norm_type == 'gn': | |
| norm_builder = lambda: nn.GroupNorm(8, channels) | |
| elif norm_type == 'ln': | |
| norm_builder = lambda: LayerNorm(channels, dim=1, eps=ln_eps) | |
| else: | |
| norm_builder = lambda: nn.Identity() | |
| self.blocks = [ | |
| nn.Sequential( | |
| norm_builder(), | |
| nn.Conv1d(channels, c_multiple * channels, kernel_size, dilation=dilation, | |
| padding=(dilation * (kernel_size - 1)) // 2), | |
| LambdaLayer(lambda x: x * kernel_size ** -0.5), | |
| nn.GELU(), | |
| nn.Conv1d(c_multiple * channels, channels, 1, dilation=dilation), | |
| ) | |
| for i in range(n) | |
| ] | |
| self.blocks = nn.ModuleList(self.blocks) | |
| self.dropout = dropout | |
| def forward(self, x): | |
| nonpadding = (x.abs().sum(1) > 0).float()[:, None, :] | |
| for b in self.blocks: | |
| x_ = b(x) | |
| if self.dropout > 0 and self.training: | |
| x_ = F.dropout(x_, self.dropout, training=self.training) | |
| x = x + x_ | |
| x = x * nonpadding | |
| return x | |
| class Pad(nn.ZeroPad2d): | |
| def __init__(self, kernel_size, dilation): | |
| pad_total = dilation * (kernel_size - 1) | |
| begin = pad_total // 2 | |
| end = pad_total - begin | |
| super(Pad, self).__init__((begin, end, begin, end)) | |
| class ZeroTemporalPad(nn.ZeroPad2d): | |
| """Pad sequences to equal lentgh in the temporal dimension""" | |
| def __init__(self, kernel_size, dilation, causal=False): | |
| total_pad = (dilation * (kernel_size - 1)) | |
| if causal: | |
| super(ZeroTemporalPad, self).__init__((total_pad, 0)) | |
| else: | |
| begin = total_pad // 2 | |
| end = total_pad - begin | |
| super(ZeroTemporalPad, self).__init__((begin, end)) | |
| class ConvBlocks(nn.Module): | |
| """Decodes the expanded phoneme encoding into spectrograms""" | |
| def __init__(self, channels, out_dims, dilations, kernel_size, | |
| norm_type='ln', layers_in_block=2, c_multiple=2, | |
| dropout=0.0, ln_eps=1e-5, init_weights=True): | |
| super(ConvBlocks, self).__init__() | |
| self.res_blocks = nn.Sequential( | |
| *[ResidualBlock(channels, kernel_size, d, | |
| n=layers_in_block, norm_type=norm_type, c_multiple=c_multiple, | |
| dropout=dropout, ln_eps=ln_eps) | |
| for d in dilations], | |
| ) | |
| if norm_type == 'bn': | |
| norm = nn.BatchNorm1d(channels) | |
| elif norm_type == 'in': | |
| norm = nn.InstanceNorm1d(channels, affine=True) | |
| elif norm_type == 'gn': | |
| norm = nn.GroupNorm(8, channels) | |
| elif norm_type == 'ln': | |
| norm = LayerNorm(channels, dim=1, eps=ln_eps) | |
| self.last_norm = norm | |
| self.post_net1 = nn.Conv1d(channels, out_dims, kernel_size=3, padding=1) | |
| if init_weights: | |
| self.apply(init_weights_func) | |
| def forward(self, x): | |
| """ | |
| :param x: [B, T, H] | |
| :return: [B, T, H] | |
| """ | |
| x = x.transpose(1, 2) | |
| nonpadding = (x.abs().sum(1) > 0).float()[:, None, :] | |
| x = self.res_blocks(x) * nonpadding | |
| x = self.last_norm(x) * nonpadding | |
| x = self.post_net1(x) * nonpadding | |
| return x.transpose(1, 2) | |
| class TextConvEncoder(ConvBlocks): | |
| def __init__(self, embed_tokens, channels, out_dims, dilations, kernel_size, | |
| norm_type='ln', layers_in_block=2, c_multiple=2, | |
| dropout=0.0, ln_eps=1e-5, init_weights=True): | |
| super().__init__(channels, out_dims, dilations, kernel_size, | |
| norm_type, layers_in_block, c_multiple, | |
| dropout, ln_eps, init_weights) | |
| self.embed_tokens = embed_tokens | |
| self.embed_scale = math.sqrt(channels) | |
| def forward(self, txt_tokens): | |
| """ | |
| :param txt_tokens: [B, T] | |
| :return: { | |
| 'encoder_out': [B x T x C] | |
| } | |
| """ | |
| x = self.embed_scale * self.embed_tokens(txt_tokens) | |
| return super().forward(x) | |
| class ConditionalConvBlocks(ConvBlocks): | |
| def __init__(self, channels, g_channels, out_dims, dilations, kernel_size, | |
| norm_type='ln', layers_in_block=2, c_multiple=2, | |
| dropout=0.0, ln_eps=1e-5, init_weights=True, is_BTC=True): | |
| super().__init__(channels, out_dims, dilations, kernel_size, | |
| norm_type, layers_in_block, c_multiple, | |
| dropout, ln_eps, init_weights) | |
| self.g_prenet = nn.Conv1d(g_channels, channels, 3, padding=1) | |
| self.is_BTC = is_BTC | |
| if init_weights: | |
| self.g_prenet.apply(init_weights_func) | |
| def forward(self, x, g, x_mask): | |
| if self.is_BTC: | |
| x = x.transpose(1, 2) | |
| g = g.transpose(1, 2) | |
| x_mask = x_mask.transpose(1, 2) | |
| x = x + self.g_prenet(g) | |
| x = x * x_mask | |
| if not self.is_BTC: | |
| x = x.transpose(1, 2) | |
| x = super(ConditionalConvBlocks, self).forward(x) # input needs to be BTC | |
| if not self.is_BTC: | |
| x = x.transpose(1, 2) | |
| return x | |