Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import numpy as np | |
| import argparse | |
| import h5py | |
| import time | |
| import _pickle as cPickle | |
| import _pickle | |
| import matplotlib.pyplot as plt | |
| import csv | |
| from sklearn import metrics | |
| from utilities import (create_folder, get_filename, d_prime) | |
| import config | |
| def _load_metrics0(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size): | |
| workspace0 = '/mnt/cephfs_new_wj/speechsv/qiuqiang.kong/workspaces/pub_audioset_tagging_cnn_transfer' | |
| statistics_path = os.path.join(workspace0, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| bal_map = np.array([statistics['average_precision'] for statistics in statistics_dict['bal']]) # (N, classes_num) | |
| bal_map = np.mean(bal_map, axis=-1) | |
| test_map = np.array([statistics['average_precision'] for statistics in statistics_dict['test']]) # (N, classes_num) | |
| test_map = np.mean(test_map, axis=-1) | |
| legend = '{}, {}, bal={}, aug={}, bs={}'.format(data_type, model_type, balanced, augmentation, batch_size) | |
| # return {'bal_map': bal_map, 'test_map': test_map, 'legend': legend} | |
| return bal_map, test_map, legend | |
| def _load_metrics0_classwise(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size): | |
| workspace0 = '/mnt/cephfs_new_wj/speechsv/qiuqiang.kong/workspaces/pub_audioset_tagging_cnn_transfer' | |
| statistics_path = os.path.join(workspace0, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| return statistics_dict['test'][300]['average_precision'] | |
| def _load_metrics0_classwise2(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size): | |
| workspace0 = '/mnt/cephfs_new_wj/speechsv/qiuqiang.kong/workspaces/pub_audioset_tagging_cnn_transfer' | |
| statistics_path = os.path.join(workspace0, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| k = 270 | |
| mAP = np.mean(statistics_dict['test'][k]['average_precision']) | |
| mAUC = np.mean(statistics_dict['test'][k]['auc']) | |
| dprime = d_prime(mAUC) | |
| return mAP, mAUC, dprime | |
| def _load_metrics_classwise(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size): | |
| workspace = '/mnt/cephfs_new_wj/speechsv/kongqiuqiang/workspaces/cvssp/pub_audioset_tagging_cnn' | |
| statistics_path = os.path.join(workspace, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| k = 300 | |
| mAP = np.mean(statistics_dict['test'][k]['average_precision']) | |
| mAUC = np.mean(statistics_dict['test'][k]['auc']) | |
| dprime = d_prime(mAUC) | |
| return mAP, mAUC, dprime | |
| def plot(args): | |
| # Arguments & parameters | |
| dataset_dir = args.dataset_dir | |
| workspace = args.workspace | |
| select = args.select | |
| classes_num = config.classes_num | |
| max_plot_iteration = 1000000 | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| class_labels_indices_path = os.path.join(dataset_dir, 'metadata', | |
| 'class_labels_indices.csv') | |
| save_out_path = 'results/{}.pdf'.format(select) | |
| create_folder(os.path.dirname(save_out_path)) | |
| # Read labels | |
| labels = config.labels | |
| # Plot | |
| fig, ax = plt.subplots(1, 1, figsize=(15, 8)) | |
| lines = [] | |
| def _load_metrics(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size): | |
| statistics_path = os.path.join(workspace, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| bal_map = np.array([statistics['average_precision'] for statistics in statistics_dict['bal']]) # (N, classes_num) | |
| bal_map = np.mean(bal_map, axis=-1) | |
| test_map = np.array([statistics['average_precision'] for statistics in statistics_dict['test']]) # (N, classes_num) | |
| test_map = np.mean(test_map, axis=-1) | |
| legend = '{}, {}, bal={}, aug={}, bs={}'.format(data_type, model_type, balanced, augmentation, batch_size) | |
| # return {'bal_map': bal_map, 'test_map': test_map, 'legend': legend} | |
| return bal_map, test_map, legend | |
| bal_alpha = 0.3 | |
| test_alpha = 1.0 | |
| lines = [] | |
| if select == '1_cnn13': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_no_dropout', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13_no_specaug', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_no_specaug', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_no_dropout', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'none', 32) | |
| line, = ax.plot(bal_map, color='k', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_no_mixup', color='k', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_mixup_in_wave', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='c', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_mixup_in_wave', color='c', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_pooling': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_gwrp', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13_gmpgapgwrp', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_att', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13_gmpgapatt', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_resnet': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'ResNet18', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='ResNet18', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'ResNet34', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='k', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='resnet34', color='k', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'ResNet50', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='c', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='resnet50', color='c', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_densenet': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'DenseNet121', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='densenet121', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'DenseNet201', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='densenet201', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_cnn9': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn5', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn5', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn9', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn9', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_hop': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 500, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13_hop500', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 640, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13_hop640', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 1000, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='k', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13_hop1000', color='k', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_emb': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb32', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13_emb32', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb128', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13_emb128', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb512', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='k', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13_emb512', color='k', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_mobilenet': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'MobileNetV1', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='mobilenetv1', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'MobileNetV2', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='mobilenetv2', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_waveform': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_LeeNet', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn1d_LeeNet', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_LeeNet18', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn1d_LeeNet18', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_DaiNet', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='k', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn1d_DaiNet', color='k', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_ResNet34', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='c', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn1d_ResNet34', color='c', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_ResNet50', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='m', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn1d_ResNet50', color='m', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_waveform_cnn2d': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_SpAndWav', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_SpAndWav', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_WavCnn2d', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_WavCnn2d', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_decision_level': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_DecisionLevelMax', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_DecisionLevelMax', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_DecisionLevelAvg', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_DecisionLevelAvg', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_DecisionLevelAtt', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='k', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_DecisionLevelAtt', color='k', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_transformer': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_Transformer1', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_Transformer1', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_Transformer3', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_Transformer3', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_Transformer6', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='k', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_Transformer6', color='k', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_aug': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,balanced,mixup', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'none', 'none', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,none,none', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'none', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,balanced,none', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup_from_0_epoch', 32) | |
| line, = ax.plot(bal_map, color='m', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,balanced,mixup_from_0_epoch', color='m', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_bal_train_aug': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,balanced,mixup', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'none', 'none', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,none,none', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'balanced', 'none', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,balanced,none', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup_from_0_epoch', 32) | |
| line, = ax.plot(bal_map, color='m', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,balanced,mixup_from_0_epoch', color='m', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_sr': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14_16k', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14_16k', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14_8k', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14_8k', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_time_domain': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14_mixup_time_domain', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14_time_domain', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_partial_full': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'partial_0.9_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,partial_0.9', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'partial_0.8_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,partial_0.8', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'partial_0.7_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='k', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,partial_0.7', color='k', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'partial_0.5_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='m', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,partial_0.5', color='m', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_window': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 2048, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14_win2048', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_melbins': | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 32, 50, 14000, 'full_train', 'Cnn14_mel32', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14_mel32', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 128, 50, 14000, 'full_train', 'Cnn14_mel128', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14_mel128', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '1_alternate': | |
| max_plot_iteration = 2000000 | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'alternate', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14_alternate', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '2_all': | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn9', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn9', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn5', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn5', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'MobileNetV1', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='MobileNetV1', color='k', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_ResNet34', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn1d_ResNet34', color='grey', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'ResNet34', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='ResNet34', color='grey', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_WavCnn2d', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_WavCnn2d', color='m', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_SpAndWav', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_SpAndWav', color='orange', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '2_emb': | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb32', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_emb32', color='r', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb128', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_128', color='k', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb512', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='Cnn13_512', color='g', alpha=test_alpha) | |
| lines.append(line) | |
| elif select == '2_aug': | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn13', color='b', alpha=test_alpha) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_no_specaug', 'clip_bce', 'none', 'none', 32) | |
| line, = ax.plot(bal_map, color='c', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='cnn14,none,none', color='c', alpha=test_alpha) | |
| lines.append(line) | |
| ax.set_ylim(0, 1.) | |
| ax.set_xlim(0, len(iterations)) | |
| ax.xaxis.set_ticks(np.arange(0, len(iterations), 25)) | |
| ax.xaxis.set_ticklabels(np.arange(0, max_plot_iteration, 50000)) | |
| ax.yaxis.set_ticks(np.arange(0, 1.01, 0.05)) | |
| ax.yaxis.set_ticklabels(np.around(np.arange(0, 1.01, 0.05), decimals=2)) | |
| ax.grid(color='b', linestyle='solid', linewidth=0.3) | |
| plt.legend(handles=lines, loc=2) | |
| # box = ax.get_position() | |
| # ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) | |
| # ax.legend(handles=lines, bbox_to_anchor=(1.0, 1.0)) | |
| plt.savefig(save_out_path) | |
| print('Save figure to {}'.format(save_out_path)) | |
| def plot_for_paper(args): | |
| # Arguments & parameters | |
| dataset_dir = args.dataset_dir | |
| workspace = args.workspace | |
| select = args.select | |
| classes_num = config.classes_num | |
| max_plot_iteration = 1000000 | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| class_labels_indices_path = os.path.join(dataset_dir, 'metadata', | |
| 'class_labels_indices.csv') | |
| save_out_path = 'results/paper_{}.pdf'.format(select) | |
| create_folder(os.path.dirname(save_out_path)) | |
| # Read labels | |
| labels = config.labels | |
| # Plot | |
| fig, ax = plt.subplots(1, 1, figsize=(6, 4)) | |
| lines = [] | |
| def _load_metrics(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size): | |
| statistics_path = os.path.join(workspace, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| bal_map = np.array([statistics['average_precision'] for statistics in statistics_dict['bal']]) # (N, classes_num) | |
| bal_map = np.mean(bal_map, axis=-1) | |
| test_map = np.array([statistics['average_precision'] for statistics in statistics_dict['test']]) # (N, classes_num) | |
| test_map = np.mean(test_map, axis=-1) | |
| legend = '{}, {}, bal={}, aug={}, bs={}'.format(data_type, model_type, balanced, augmentation, batch_size) | |
| # return {'bal_map': bal_map, 'test_map': test_map, 'legend': legend} | |
| return bal_map, test_map, legend | |
| bal_alpha = 0.3 | |
| test_alpha = 1.0 | |
| lines = [] | |
| linewidth = 1. | |
| max_plot_iteration = 540000 | |
| if select == '2_all': | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'full_train', 'Cnn9', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| # line, = ax.plot(test_map, label='cnn9', color='r', alpha=test_alpha) | |
| # lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'full_train', 'Cnn5', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| # line, = ax.plot(test_map, label='cnn5', color='g', alpha=test_alpha) | |
| # lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'MobileNetV1', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='MobileNetV1', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'full_train', 'Cnn1d_ResNet34', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| # line, = ax.plot(test_map, label='Cnn1d_ResNet34', color='grey', alpha=test_alpha) | |
| # lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'full_train', 'Cnn13_WavCnn2d', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| # line, = ax.plot(test_map, label='Wavegram-CNN', color='g', alpha=test_alpha, linewidth=linewidth) | |
| # lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_SpAndWav', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='Wavegram-Logmel-CNN', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| elif select == '2_emb': | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,emb=2048', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb32', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,emb=32', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb128', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,emb=128', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'full_train', 'Cnn13_emb512', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='g', alpha=bal_alpha) | |
| # line, = ax.plot(test_map, label='Cnn13_512', color='g', alpha=test_alpha) | |
| # lines.append(line) | |
| elif select == '2_bal': | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,bal,mixup (1.9m)', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14_mixup_time_domain', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='y', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,bal,mixup-wav (1.9m)', color='y', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'none', 'none', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,no-bal,no-mixup (1.9m)', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'none', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,bal,no-mixup (1.9m)', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'balanced', 'none', 32) | |
| line, = ax.plot(bal_map, color='k', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,bal,no-mixup (20k)', color='k', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='m', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,bal,mixup (20k)', color='m', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| elif select == '2_sr': | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,32kHz', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14_16k', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,16kHz', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14_8k', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,8kHz', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| elif select == '2_partial': | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14 (100% full)', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'partial_0.9_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| # line, = ax.plot(test_map, label='cnn14,partial_0.9', color='b', alpha=test_alpha, linewidth=linewidth) | |
| # lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'partial_0.8_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14 (80% full)', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'partial_0.7_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='k', alpha=bal_alpha, linewidth=linewidth) | |
| # line, = ax.plot(test_map, label='cnn14,partial_0.7', color='k', alpha=test_alpha, linewidth=linewidth) | |
| # lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'partial_0.5_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='cnn14 (50% full)', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| elif select == '2_melbins': | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax.plot(test_map, label='CNN14,64-melbins', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 32, 50, 14000, 'full_train', 'Cnn14_mel32', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='CNN14,32-melbins', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 128, 50, 14000, 'full_train', 'Cnn14_mel128', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax.plot(bal_map, color='r', alpha=bal_alpha) | |
| line, = ax.plot(test_map, label='CNN14,128-melbins', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| ax.set_ylim(0, 0.8) | |
| ax.set_xlim(0, len(iterations)) | |
| ax.set_xlabel('Iterations') | |
| ax.set_ylabel('mAP') | |
| ax.xaxis.set_ticks(np.arange(0, len(iterations), 50)) | |
| # ax.xaxis.set_ticklabels(np.arange(0, max_plot_iteration, 50000)) | |
| ax.xaxis.set_ticklabels(['0', '100k', '200k', '300k', '400k', '500k']) | |
| ax.yaxis.set_ticks(np.arange(0, 0.81, 0.05)) | |
| ax.yaxis.set_ticklabels(['0', '', '0.1', '', '0.2', '', '0.3', '', '0.4', '', '0.5', '', '0.6', '', '0.7', '', '0.8']) | |
| # ax.yaxis.set_ticklabels(np.around(np.arange(0, 0.81, 0.05), decimals=2)) | |
| ax.yaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3) | |
| ax.xaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3) | |
| plt.legend(handles=lines, loc=2) | |
| plt.tight_layout(0, 0, 0) | |
| # box = ax.get_position() | |
| # ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) | |
| # ax.legend(handles=lines, bbox_to_anchor=(1.0, 1.0)) | |
| plt.savefig(save_out_path) | |
| print('Save figure to {}'.format(save_out_path)) | |
| def plot_for_paper2(args): | |
| # Arguments & parameters | |
| dataset_dir = args.dataset_dir | |
| workspace = args.workspace | |
| classes_num = config.classes_num | |
| max_plot_iteration = 1000000 | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| class_labels_indices_path = os.path.join(dataset_dir, 'metadata', | |
| 'class_labels_indices.csv') | |
| save_out_path = 'results/paper2.pdf' | |
| create_folder(os.path.dirname(save_out_path)) | |
| # Read labels | |
| labels = config.labels | |
| # Plot | |
| fig, ax = plt.subplots(2, 3, figsize=(14, 7)) | |
| lines = [] | |
| def _load_metrics(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size): | |
| statistics_path = os.path.join(workspace, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| bal_map = np.array([statistics['average_precision'] for statistics in statistics_dict['bal']]) # (N, classes_num) | |
| bal_map = np.mean(bal_map, axis=-1) | |
| test_map = np.array([statistics['average_precision'] for statistics in statistics_dict['test']]) # (N, classes_num) | |
| test_map = np.mean(test_map, axis=-1) | |
| legend = '{}, {}, bal={}, aug={}, bs={}'.format(data_type, model_type, balanced, augmentation, batch_size) | |
| # return {'bal_map': bal_map, 'test_map': test_map, 'legend': legend} | |
| return bal_map, test_map, legend | |
| def _load_metrics0(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size): | |
| workspace0 = '/mnt/cephfs_new_wj/speechsv/qiuqiang.kong/workspaces/pub_audioset_tagging_cnn_transfer' | |
| statistics_path = os.path.join(workspace0, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| bal_map = np.array([statistics['average_precision'] for statistics in statistics_dict['bal']]) # (N, classes_num) | |
| bal_map = np.mean(bal_map, axis=-1) | |
| test_map = np.array([statistics['average_precision'] for statistics in statistics_dict['test']]) # (N, classes_num) | |
| test_map = np.mean(test_map, axis=-1) | |
| legend = '{}, {}, bal={}, aug={}, bs={}'.format(data_type, model_type, balanced, augmentation, batch_size) | |
| # return {'bal_map': bal_map, 'test_map': test_map, 'legend': legend} | |
| return bal_map, test_map, legend | |
| bal_alpha = 0.3 | |
| test_alpha = 1.0 | |
| lines = [] | |
| linewidth = 1. | |
| max_plot_iteration = 540000 | |
| if True: | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[0, 0].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 0].plot(test_map, label='CNN14', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'full_train', 'Cnn9', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| # line, = ax.plot(test_map, label='cnn9', color='r', alpha=test_alpha) | |
| # lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'full_train', 'Cnn5', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| # line, = ax.plot(test_map, label='cnn5', color='g', alpha=test_alpha) | |
| # lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'MobileNetV1', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[0, 0].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 0].plot(test_map, label='MobileNetV1', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'full_train', 'Cnn1d_ResNet34', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='b', alpha=bal_alpha) | |
| # line, = ax.plot(test_map, label='Cnn1d_ResNet34', color='grey', alpha=test_alpha) | |
| # lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'full_train', 'ResNet34', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax[0, 0].plot(bal_map, color='k', alpha=bal_alpha, linewidth=linewidth) | |
| # line, = ax[0, 0].plot(test_map, label='ResNet38', color='k', alpha=test_alpha, linewidth=linewidth) | |
| # lines.append(line) | |
| # (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| # 320, 64, 50, 14000, 'full_train', 'Cnn13_WavCnn2d', 'clip_bce', 'balanced', 'mixup', 32) | |
| # line, = ax.plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| # line, = ax.plot(test_map, label='Wavegram-CNN', color='g', alpha=test_alpha, linewidth=linewidth) | |
| # lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_SpAndWav', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[0, 0].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 0].plot(test_map, label='Wavegram-Logmel-CNN', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| ax[0, 0].legend(handles=lines, loc=2) | |
| ax[0, 0].set_title('(a) Comparison of architectures') | |
| if True: | |
| lines = [] | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[0, 1].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup (1.9m)', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'none', 'none', 32) | |
| line, = ax[0, 1].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 1].plot(test_map, label='CNN14,no-bal,no-mixup (1.9m)', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14_mixup_time_domain', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[0, 1].plot(bal_map, color='y', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup-wav (1.9m)', color='y', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'none', 32) | |
| line, = ax[0, 1].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 1].plot(test_map, label='CNN14,bal,no-mixup (1.9m)', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'balanced', 'none', 32) | |
| line, = ax[0, 1].plot(bal_map, color='k', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 1].plot(test_map, label='CNN14,bal,no-mixup (20k)', color='k', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[0, 1].plot(bal_map, color='m', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup (20k)', color='m', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| ax[0, 1].legend(handles=lines, loc=2, fontsize=8) | |
| ax[0, 1].set_title('(b) Comparison of training data and augmentation') | |
| if True: | |
| lines = [] | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[0, 2].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 2].plot(test_map, label='CNN14,emb=2048', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb32', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[0, 2].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 2].plot(test_map, label='CNN14,emb=32', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics0('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb128', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[0, 2].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[0, 2].plot(test_map, label='CNN14,emb=128', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| ax[0, 2].legend(handles=lines, loc=2) | |
| ax[0, 2].set_title('(c) Comparison of embedding size') | |
| if True: | |
| lines = [] | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[1, 0].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[1, 0].plot(test_map, label='CNN14 (100% full)', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'partial_0.8_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[1, 0].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[1, 0].plot(test_map, label='CNN14 (80% full)', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'partial_0.5_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[1, 0].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[1, 0].plot(test_map, label='cnn14 (50% full)', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| ax[1, 0].legend(handles=lines, loc=2) | |
| ax[1, 0].set_title('(d) Comparison of amount of training data') | |
| if True: | |
| lines = [] | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[1, 1].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[1, 1].plot(test_map, label='CNN14,32kHz', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14_16k', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[1, 1].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[1, 1].plot(test_map, label='CNN14,16kHz', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14_8k', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[1, 1].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[1, 1].plot(test_map, label='CNN14,8kHz', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| ax[1, 1].legend(handles=lines, loc=2) | |
| ax[1, 1].set_title('(e) Comparison of sampling rate') | |
| if True: | |
| lines = [] | |
| iterations = np.arange(0, max_plot_iteration, 2000) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[1, 2].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth) | |
| line, = ax[1, 2].plot(test_map, label='CNN14,64-melbins', color='r', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 32, 50, 14000, 'full_train', 'Cnn14_mel32', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[1, 2].plot(bal_map, color='b', alpha=bal_alpha) | |
| line, = ax[1, 2].plot(test_map, label='CNN14,32-melbins', color='b', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| (bal_map, test_map, legend) = _load_metrics('main', 32000, 1024, | |
| 320, 128, 50, 14000, 'full_train', 'Cnn14_mel128', 'clip_bce', 'balanced', 'mixup', 32) | |
| line, = ax[1, 2].plot(bal_map, color='g', alpha=bal_alpha) | |
| line, = ax[1, 2].plot(test_map, label='CNN14,128-melbins', color='g', alpha=test_alpha, linewidth=linewidth) | |
| lines.append(line) | |
| ax[1, 2].legend(handles=lines, loc=2) | |
| ax[1, 2].set_title('(f) Comparison of mel bins number') | |
| for i in range(2): | |
| for j in range(3): | |
| ax[i, j].set_ylim(0, 0.8) | |
| ax[i, j].set_xlim(0, len(iterations)) | |
| ax[i, j].set_xlabel('Iterations') | |
| ax[i, j].set_ylabel('mAP') | |
| ax[i, j].xaxis.set_ticks(np.arange(0, len(iterations), 50)) | |
| # ax.xaxis.set_ticklabels(np.arange(0, max_plot_iteration, 50000)) | |
| ax[i, j].xaxis.set_ticklabels(['0', '100k', '200k', '300k', '400k', '500k']) | |
| ax[i, j].yaxis.set_ticks(np.arange(0, 0.81, 0.05)) | |
| ax[i, j].yaxis.set_ticklabels(['0', '', '0.1', '', '0.2', '', '0.3', '', '0.4', '', '0.5', '', '0.6', '', '0.7', '', '0.8']) | |
| # ax.yaxis.set_ticklabels(np.around(np.arange(0, 0.81, 0.05), decimals=2)) | |
| ax[i, j].yaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3) | |
| ax[i, j].xaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3) | |
| plt.tight_layout(0, 1, 0) | |
| # box = ax.get_position() | |
| # ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) | |
| # ax.legend(handles=lines, bbox_to_anchor=(1.0, 1.0)) | |
| plt.savefig(save_out_path) | |
| print('Save figure to {}'.format(save_out_path)) | |
| def table_values(args): | |
| # Arguments & parameters | |
| dataset_dir = args.dataset_dir | |
| workspace = args.workspace | |
| select = args.select | |
| def _load_metrics(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size, iteration): | |
| statistics_path = os.path.join(workspace, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| idx = iteration // 2000 | |
| mAP = np.mean(statistics_dict['test'][idx]['average_precision']) | |
| mAUC = np.mean(statistics_dict['test'][idx]['auc']) | |
| dprime = d_prime(mAUC) | |
| print('mAP: {:.3f}'.format(mAP)) | |
| print('mAUC: {:.3f}'.format(mAUC)) | |
| print('dprime: {:.3f}'.format(dprime)) | |
| if select == 'cnn13': | |
| iteration = 600000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn5': | |
| iteration = 440000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn5', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn9': | |
| iteration = 440000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn9', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn13_decisionlevelmax': | |
| iteration = 400000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_DecisionLevelMax', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn13_decisionlevelavg': | |
| iteration = 600000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_DecisionLevelAvg', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn13_decisionlevelatt': | |
| iteration = 600000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_DecisionLevelAtt', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn13_emb32': | |
| iteration = 560000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb32', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn13_emb128': | |
| iteration = 560000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb128', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn13_emb512': | |
| iteration = 440000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_emb512', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn13_hop500': | |
| iteration = 440000 | |
| _load_metrics('main', 32000, 1024, | |
| 500, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn13_hop640': | |
| iteration = 440000 | |
| _load_metrics('main', 32000, 1024, | |
| 640, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'cnn13_hop1000': | |
| iteration = 540000 | |
| _load_metrics('main', 32000, 1024, | |
| 1000, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'mobilenetv1': | |
| iteration = 560000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'MobileNetV1', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'mobilenetv2': | |
| iteration = 560000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'MobileNetV2', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'resnet18': | |
| iteration = 600000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'ResNet18', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'resnet34': | |
| iteration = 600000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'ResNet34', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'resnet50': | |
| iteration = 600000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'ResNet50', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'dainet': | |
| iteration = 600000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_DaiNet', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'leenet': | |
| iteration = 540000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_LeeNet', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'leenet18': | |
| iteration = 440000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_LeeNet18', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'resnet34_1d': | |
| iteration = 500000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_ResNet34', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'resnet50_1d': | |
| iteration = 500000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn1d_ResNet50', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'waveform_cnn2d': | |
| iteration = 660000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_WavCnn2d', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| elif select == 'waveform_spandwav': | |
| iteration = 700000 | |
| _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_SpAndWav', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| def crop_label(label): | |
| max_len = 16 | |
| if len(label) <= max_len: | |
| return label | |
| else: | |
| words = label.split(' ') | |
| cropped_label = '' | |
| for w in words: | |
| if len(cropped_label + ' ' + w) > max_len: | |
| break | |
| else: | |
| cropped_label += ' {}'.format(w) | |
| return cropped_label | |
| def add_comma(integer): | |
| integer = int(integer) | |
| if integer >= 1000: | |
| return str(integer // 1000) + ',' + str(integer % 1000) | |
| else: | |
| return str(integer) | |
| def plot_class_iteration(args): | |
| # Arguments & parameters | |
| workspace = args.workspace | |
| select = args.select | |
| save_out_path = 'results_map/class_iteration_map.pdf' | |
| create_folder(os.path.dirname(save_out_path)) | |
| def _load_metrics(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size, iteration): | |
| statistics_path = os.path.join(workspace, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| return statistics_dict | |
| iteration = 600000 | |
| statistics_dict = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| mAP_mat = np.array([e['average_precision'] for e in statistics_dict['test']]) | |
| mAP_mat = mAP_mat[0 : 300, :] | |
| sorted_indexes = np.argsort(config.full_samples_per_class)[::-1] | |
| fig, axs = plt.subplots(1, 3, figsize=(20, 5)) | |
| ranges = [np.arange(0, 10), np.arange(250, 260), np.arange(517, 527)] | |
| axs[0].set_ylabel('AP') | |
| for col in range(0, 3): | |
| axs[col].set_ylim(0, 1.) | |
| axs[col].set_xlim(0, 301) | |
| axs[col].set_xlabel('Iterations') | |
| axs[col].set_ylabel('AP') | |
| axs[col].xaxis.set_ticks(np.arange(0, 301, 100)) | |
| axs[col].xaxis.set_ticklabels(['0', '200k', '400k', '600k']) | |
| lines = [] | |
| for _ix in ranges[col]: | |
| _label = crop_label(config.labels[sorted_indexes[_ix]]) + \ | |
| ' ({})'.format(add_comma(config.full_samples_per_class[sorted_indexes[_ix]])) | |
| line, = axs[col].plot(mAP_mat[:, sorted_indexes[_ix]], label=_label) | |
| lines.append(line) | |
| box = axs[col].get_position() | |
| axs[col].set_position([box.x0, box.y0, box.width * 1., box.height]) | |
| axs[col].legend(handles=lines, bbox_to_anchor=(1., 1.)) | |
| axs[col].yaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3) | |
| plt.tight_layout(pad=4, w_pad=1, h_pad=1) | |
| plt.savefig(save_out_path) | |
| print(save_out_path) | |
| def _load_old_metrics(workspace, filename, iteration, data_type): | |
| assert data_type in ['train', 'test'] | |
| stat_name = "stat_{}_iters.p".format(iteration) | |
| # Load stats | |
| stat_path = os.path.join(workspace, "stats", filename, data_type, stat_name) | |
| try: | |
| stats = cPickle.load(open(stat_path, 'rb')) | |
| except: | |
| stats = cPickle.load(open(stat_path, 'rb'), encoding='latin1') | |
| precisions = [stat['precisions'] for stat in stats] | |
| recalls = [stat['recalls'] for stat in stats] | |
| maps = np.array([stat['AP'] for stat in stats]) | |
| aucs = np.array([stat['auc'] for stat in stats]) | |
| return {'average_precision': maps, 'AUC': aucs} | |
| def _sort(ys): | |
| sorted_idxes = np.argsort(ys) | |
| sorted_idxes = sorted_idxes[::-1] | |
| sorted_ys = ys[sorted_idxes] | |
| sorted_lbs = [config.labels[e] for e in sorted_idxes] | |
| return sorted_ys, sorted_idxes, sorted_lbs | |
| def load_data(hdf5_path): | |
| with h5py.File(hdf5_path, 'r') as hf: | |
| x = hf['x'][:] | |
| y = hf['y'][:] | |
| video_id_list = list(hf['video_id_list'][:]) | |
| return x, y, video_id_list | |
| def get_avg_stats(workspace, bgn_iter, fin_iter, interval_iter, filename, data_type): | |
| assert data_type in ['train', 'test'] | |
| bal_train_hdf5 = "/vol/vssp/msos/audioset/packed_features/bal_train.h5" | |
| eval_hdf5 = "/vol/vssp/msos/audioset/packed_features/eval.h5" | |
| unbal_train_hdf5 = "/vol/vssp/msos/audioset/packed_features/unbal_train.h5" | |
| t1 = time.time() | |
| if data_type == 'test': | |
| (te_x, te_y, te_id_list) = load_data(eval_hdf5) | |
| elif data_type == 'train': | |
| (te_x, te_y, te_id_list) = load_data(bal_train_hdf5) | |
| y = te_y | |
| prob_dir = os.path.join(workspace, "probs", filename, data_type) | |
| names = os.listdir(prob_dir) | |
| probs = [] | |
| iters = range(bgn_iter, fin_iter, interval_iter) | |
| for iter in iters: | |
| pickle_path = os.path.join(prob_dir, "prob_%d_iters.p" % iter) | |
| try: | |
| prob = cPickle.load(open(pickle_path, 'rb')) | |
| except: | |
| prob = cPickle.load(open(pickle_path, 'rb'), encoding='latin1') | |
| probs.append(prob) | |
| avg_prob = np.mean(np.array(probs), axis=0) | |
| n_out = y.shape[1] | |
| stats = [] | |
| for k in range(n_out): # around 7 seconds | |
| (precisions, recalls, thresholds) = metrics.precision_recall_curve(y[:, k], avg_prob[:, k]) | |
| avg_precision = metrics.average_precision_score(y[:, k], avg_prob[:, k], average=None) | |
| (fpr, tpr, thresholds) = metrics.roc_curve(y[:, k], avg_prob[:, k]) | |
| auc = metrics.roc_auc_score(y[:, k], avg_prob[:, k], average=None) | |
| # eer = pp_data.eer(avg_prob[:, k], y[:, k]) | |
| skip = 1000 | |
| dict = {'precisions': precisions[0::skip], 'recalls': recalls[0::skip], 'AP': avg_precision, | |
| 'fpr': fpr[0::skip], 'fnr': 1. - tpr[0::skip], 'auc': auc} | |
| stats.append(dict) | |
| mAPs = np.array([e['AP'] for e in stats]) | |
| aucs = np.array([e['auc'] for e in stats]) | |
| print("Get avg time: {}".format(time.time() - t1)) | |
| return {'average_precision': mAPs, 'auc': aucs} | |
| def _samples_num_per_class(): | |
| bal_train_hdf5 = "/vol/vssp/msos/audioset/packed_features/bal_train.h5" | |
| eval_hdf5 = "/vol/vssp/msos/audioset/packed_features/eval.h5" | |
| unbal_train_hdf5 = "/vol/vssp/msos/audioset/packed_features/unbal_train.h5" | |
| (x, y, id_list) = load_data(eval_hdf5) | |
| eval_num = np.sum(y, axis=0) | |
| (x, y, id_list) = load_data(bal_train_hdf5) | |
| bal_num = np.sum(y, axis=0) | |
| (x, y, id_list) = load_data(unbal_train_hdf5) | |
| unbal_num = np.sum(y, axis=0) | |
| return bal_num, unbal_num, eval_num | |
| def get_label_quality(): | |
| rate_csv = '/vol/vssp/msos/qk/workspaces/pub_audioset_tagging_cnn_transfer/metadata/qa_true_counts.csv' | |
| with open(rate_csv, 'r') as f: | |
| reader = csv.reader(f, delimiter=',') | |
| lis = list(reader) | |
| rates = [] | |
| for n in range(1, len(lis)): | |
| li = lis[n] | |
| if float(li[1]) == 0: | |
| rate = None | |
| else: | |
| rate = float(li[2]) / float(li[1]) | |
| rates.append(rate) | |
| return rates | |
| def summary_stats(args): | |
| # Arguments & parameters | |
| workspace = args.workspace | |
| out_stat_path = os.path.join(workspace, 'results', 'stats_for_paper.pkl') | |
| create_folder(os.path.dirname(out_stat_path)) | |
| # Old workspace | |
| old_workspace = '/vol/vssp/msos/qk/workspaces/audioset_classification' | |
| # bal_train_metrics = _load_old_metrics(old_workspace, 'tmp127', 20000, 'train') | |
| # eval_metrics = _load_old_metrics(old_workspace, 'tmp127', 20000, 'test') | |
| bal_train_metrics = get_avg_stats(old_workspace, bgn_iter=10000, fin_iter=50001, interval_iter=5000, filename='tmp127_re', data_type='train') | |
| eval_metrics = get_avg_stats(old_workspace, bgn_iter=10000, fin_iter=50001, interval_iter=5000, filename='tmp127_re', data_type='test') | |
| maps0te = eval_metrics['average_precision'] | |
| (maps0te, sorted_idxes, sorted_lbs) = _sort(maps0te) | |
| bal_num, unbal_num, eval_num = _samples_num_per_class() | |
| output_dict = { | |
| 'labels': config.labels, | |
| 'label_quality': get_label_quality(), | |
| 'sorted_indexes_for_plot': sorted_idxes, | |
| 'official_balanced_trainig_samples': bal_num, | |
| 'official_unbalanced_training_samples': unbal_num, | |
| 'official_eval_samples': eval_num, | |
| 'downloaded_full_training_samples': config.full_samples_per_class, | |
| 'averaging_instance_system_avg_9_probs_from_10000_to_50000_iterations': | |
| {'bal_train': bal_train_metrics, 'eval': eval_metrics} | |
| } | |
| def _load_metrics(filename, sample_rate, window_size, hop_size, mel_bins, fmin, | |
| fmax, data_type, model_type, loss_type, balanced, augmentation, batch_size, iteration): | |
| _workspace = '/vol/vssp/msos/qk/bytedance/workspaces_important/pub_audioset_tagging_cnn_transfer' | |
| statistics_path = os.path.join(_workspace, 'statistics', filename, | |
| 'sample_rate={},window_size={},hop_size={},mel_bins={},fmin={},fmax={}'.format( | |
| sample_rate, window_size, hop_size, mel_bins, fmin, fmax), | |
| 'data_type={}'.format(data_type), model_type, | |
| 'loss_type={}'.format(loss_type), 'balanced={}'.format(balanced), | |
| 'augmentation={}'.format(augmentation), 'batch_size={}'.format(batch_size), | |
| 'statistics.pkl') | |
| statistics_dict = cPickle.load(open(statistics_path, 'rb')) | |
| _idx = iteration // 2000 | |
| _dict = {'bal_train': {'average_precision': statistics_dict['bal'][_idx]['average_precision'], | |
| 'auc': statistics_dict['bal'][_idx]['auc']}, | |
| 'eval': {'average_precision': statistics_dict['test'][_idx]['average_precision'], | |
| 'auc': statistics_dict['test'][_idx]['auc']}} | |
| return _dict | |
| iteration = 600000 | |
| output_dict['cnn13_system_iteration60k'] = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| iteration = 560000 | |
| output_dict['mobilenetv1_system_iteration56k'] = _load_metrics('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'MobileNetV1', 'clip_bce', 'balanced', 'mixup', 32, iteration) | |
| cPickle.dump(output_dict, open(out_stat_path, 'wb')) | |
| print('Write stats for paper to {}'.format(out_stat_path)) | |
| def prepare_plot_long_4_rows(sorted_lbs): | |
| N = len(sorted_lbs) | |
| f,(ax1a, ax2a, ax3a, ax4a) = plt.subplots(4, 1,sharey=False, facecolor='w', figsize=(10, 12)) | |
| fontsize = 5 | |
| K = 132 | |
| ax1a.set_xlim(0, K) | |
| ax2a.set_xlim(K, 2 * K) | |
| ax3a.set_xlim(2 * K, 3 * K) | |
| ax4a.set_xlim(3 * K, N) | |
| truncated_sorted_lbs = [] | |
| for lb in sorted_lbs: | |
| lb = lb[0 : 25] | |
| words = lb.split(' ') | |
| if len(words[-1]) < 3: | |
| lb = ' '.join(words[0:-1]) | |
| truncated_sorted_lbs.append(lb) | |
| ax1a.grid(which='major', axis='x', linestyle='-', alpha=0.3) | |
| ax2a.grid(which='major', axis='x', linestyle='-', alpha=0.3) | |
| ax3a.grid(which='major', axis='x', linestyle='-', alpha=0.3) | |
| ax4a.grid(which='major', axis='x', linestyle='-', alpha=0.3) | |
| ax1a.set_yscale('log') | |
| ax2a.set_yscale('log') | |
| ax3a.set_yscale('log') | |
| ax4a.set_yscale('log') | |
| ax1b = ax1a.twinx() | |
| ax2b = ax2a.twinx() | |
| ax3b = ax3a.twinx() | |
| ax4b = ax4a.twinx() | |
| ax1b.set_ylim(0., 1.) | |
| ax2b.set_ylim(0., 1.) | |
| ax3b.set_ylim(0., 1.) | |
| ax4b.set_ylim(0., 1.) | |
| ax1b.set_ylabel('Average precision') | |
| ax2b.set_ylabel('Average precision') | |
| ax3b.set_ylabel('Average precision') | |
| ax4b.set_ylabel('Average precision') | |
| ax1b.yaxis.grid(color='grey', linestyle='--', alpha=0.5) | |
| ax2b.yaxis.grid(color='grey', linestyle='--', alpha=0.5) | |
| ax3b.yaxis.grid(color='grey', linestyle='--', alpha=0.5) | |
| ax4b.yaxis.grid(color='grey', linestyle='--', alpha=0.5) | |
| ax1a.xaxis.set_ticks(np.arange(K)) | |
| ax1a.xaxis.set_ticklabels(truncated_sorted_lbs[0:K], rotation=90, fontsize=fontsize) | |
| ax1a.xaxis.tick_bottom() | |
| ax1a.set_ylabel("Number of audio clips") | |
| ax2a.xaxis.set_ticks(np.arange(K, 2*K)) | |
| ax2a.xaxis.set_ticklabels(truncated_sorted_lbs[K:2*K], rotation=90, fontsize=fontsize) | |
| ax2a.xaxis.tick_bottom() | |
| # ax2a.tick_params(left='off', which='both') | |
| ax2a.set_ylabel("Number of audio clips") | |
| ax3a.xaxis.set_ticks(np.arange(2*K, 3*K)) | |
| ax3a.xaxis.set_ticklabels(truncated_sorted_lbs[2*K:3*K], rotation=90, fontsize=fontsize) | |
| ax3a.xaxis.tick_bottom() | |
| ax3a.set_ylabel("Number of audio clips") | |
| ax4a.xaxis.set_ticks(np.arange(3*K, N)) | |
| ax4a.xaxis.set_ticklabels(truncated_sorted_lbs[3*K:], rotation=90, fontsize=fontsize) | |
| ax4a.xaxis.tick_bottom() | |
| # ax4a.tick_params(left='off', which='both') | |
| ax4a.set_ylabel("Number of audio clips") | |
| ax1a.spines['right'].set_visible(False) | |
| ax1b.spines['right'].set_visible(False) | |
| ax2a.spines['left'].set_visible(False) | |
| ax2b.spines['left'].set_visible(False) | |
| ax2a.spines['right'].set_visible(False) | |
| ax2b.spines['right'].set_visible(False) | |
| ax3a.spines['left'].set_visible(False) | |
| ax3b.spines['left'].set_visible(False) | |
| ax3a.spines['right'].set_visible(False) | |
| ax3b.spines['right'].set_visible(False) | |
| ax4a.spines['left'].set_visible(False) | |
| ax4b.spines['left'].set_visible(False) | |
| plt.subplots_adjust(hspace = 0.8) | |
| return ax1a, ax2a, ax3a, ax4a, ax1b, ax2b, ax3b, ax4b | |
| def _scatter_4_rows(x, ax, ax2, ax3, ax4, s, c, marker='.', alpha=1.): | |
| N = len(x) | |
| ax.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha) | |
| ax2.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha) | |
| ax3.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha) | |
| ax4.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha) | |
| def _plot_4_rows(x, ax, ax2, ax3, ax4, c, linewidth=1.0, alpha=1.0, label=""): | |
| N = len(x) | |
| ax.plot(x, c=c, linewidth=linewidth, alpha=alpha) | |
| ax2.plot(x, c=c, linewidth=linewidth, alpha=alpha) | |
| ax3.plot(x, c=c, linewidth=linewidth, alpha=alpha) | |
| line, = ax4.plot(x, c=c, linewidth=linewidth, alpha=alpha, label=label) | |
| return line | |
| def plot_long_fig(args): | |
| # Arguments & parameters | |
| workspace = args.workspace | |
| # Paths | |
| stat_path = os.path.join(workspace, 'results', 'stats_for_paper.pkl') | |
| save_out_path = 'results/long_fig.pdf' | |
| create_folder(os.path.dirname(save_out_path)) | |
| # Stats | |
| stats = cPickle.load(open(stat_path, 'rb')) | |
| N = len(config.labels) | |
| sorted_indexes = stats['sorted_indexes_for_plot'] | |
| sorted_labels = np.array(config.labels)[sorted_indexes] | |
| audio_clips_per_class = stats['official_balanced_trainig_samples'] + stats['official_unbalanced_training_samples'] | |
| audio_clips_per_class = audio_clips_per_class[sorted_indexes] | |
| (ax1a, ax2a, ax3a, ax4a, ax1b, ax2b, ax3b, ax4b) = prepare_plot_long_4_rows(sorted_labels) | |
| # plot the same data on both axes | |
| ax1a.bar(np.arange(N), audio_clips_per_class, alpha=0.3) | |
| ax2a.bar(np.arange(N), audio_clips_per_class, alpha=0.3) | |
| ax3a.bar(np.arange(N), audio_clips_per_class, alpha=0.3) | |
| ax4a.bar(np.arange(N), audio_clips_per_class, alpha=0.3) | |
| maps_avg_instances = stats['averaging_instance_system_avg_9_probs_from_10000_to_50000_iterations']['eval']['average_precision'] | |
| maps_avg_instances = maps_avg_instances[sorted_indexes] | |
| maps_cnn13 = stats['cnn13_system_iteration60k']['eval']['average_precision'] | |
| maps_cnn13 = maps_cnn13[sorted_indexes] | |
| maps_mobilenetv1 = stats['mobilenetv1_system_iteration56k']['eval']['average_precision'] | |
| maps_mobilenetv1 = maps_mobilenetv1[sorted_indexes] | |
| maps_logmel_wavegram_cnn = _load_metrics0_classwise('main', 32000, 1024, | |
| 320, 64, 50, 14000, 'full_train', 'Cnn13_SpAndWav', 'clip_bce', 'balanced', 'mixup', 32) | |
| maps_logmel_wavegram_cnn = maps_logmel_wavegram_cnn[sorted_indexes] | |
| _scatter_4_rows(maps_avg_instances, ax1b, ax2b, ax3b, ax4b, s=5, c='k') | |
| _scatter_4_rows(maps_cnn13, ax1b, ax2b, ax3b, ax4b, s=5, c='r') | |
| _scatter_4_rows(maps_mobilenetv1, ax1b, ax2b, ax3b, ax4b, s=5, c='b') | |
| _scatter_4_rows(maps_logmel_wavegram_cnn, ax1b, ax2b, ax3b, ax4b, s=5, c='g') | |
| linewidth = 0.7 | |
| line0te = _plot_4_rows(maps_avg_instances, ax1b, ax2b, ax3b, ax4b, c='k', linewidth=linewidth, label='AP with averaging instances (baseline)') | |
| line1te = _plot_4_rows(maps_cnn13, ax1b, ax2b, ax3b, ax4b, c='r', linewidth=linewidth, label='AP with CNN14') | |
| line2te = _plot_4_rows(maps_mobilenetv1, ax1b, ax2b, ax3b, ax4b, c='b', linewidth=linewidth, label='AP with MobileNetV1') | |
| line3te = _plot_4_rows(maps_logmel_wavegram_cnn, ax1b, ax2b, ax3b, ax4b, c='g', linewidth=linewidth, label='AP with Wavegram-Logmel-CNN') | |
| label_quality = stats['label_quality'] | |
| sorted_rate = np.array(label_quality)[sorted_indexes] | |
| for k in range(len(sorted_rate)): | |
| if sorted_rate[k] and sorted_rate[k] == 1: | |
| sorted_rate[k] = 0.99 | |
| ax1b.scatter(np.arange(N)[sorted_rate != None], sorted_rate[sorted_rate != None], s=12, c='r', linewidth=0.8, marker='+') | |
| ax2b.scatter(np.arange(N)[sorted_rate != None], sorted_rate[sorted_rate != None], s=12, c='r', linewidth=0.8, marker='+') | |
| ax3b.scatter(np.arange(N)[sorted_rate != None], sorted_rate[sorted_rate != None], s=12, c='r', linewidth=0.8, marker='+') | |
| line_label_quality = ax4b.scatter(np.arange(N)[sorted_rate != None], sorted_rate[sorted_rate != None], s=12, c='r', linewidth=0.8, marker='+', label='Label quality') | |
| ax1b.scatter(np.arange(N)[sorted_rate == None], 0.5 * np.ones(len(np.arange(N)[sorted_rate == None])), s=12, c='r', linewidth=0.8, marker='_') | |
| ax2b.scatter(np.arange(N)[sorted_rate == None], 0.5 * np.ones(len(np.arange(N)[sorted_rate == None])), s=12, c='r', linewidth=0.8, marker='_') | |
| ax3b.scatter(np.arange(N)[sorted_rate == None], 0.5 * np.ones(len(np.arange(N)[sorted_rate == None])), s=12, c='r', linewidth=0.8, marker='_') | |
| ax4b.scatter(np.arange(N)[sorted_rate == None], 0.5 * np.ones(len(np.arange(N)[sorted_rate == None])), s=12, c='r', linewidth=0.8, marker='_') | |
| plt.legend(handles=[line0te, line1te, line2te, line3te, line_label_quality], fontsize=6, loc=1) | |
| plt.savefig(save_out_path) | |
| print('Save fig to {}'.format(save_out_path)) | |
| def plot_flops(args): | |
| # Arguments & parameters | |
| workspace = args.workspace | |
| # Paths | |
| save_out_path = 'results_map/flops.pdf' | |
| create_folder(os.path.dirname(save_out_path)) | |
| plt.figure(figsize=(5, 5)) | |
| fig, ax = plt.subplots(1, 1) | |
| model_types = np.array(['Cnn6', 'Cnn10', 'Cnn14', 'ResNet22', 'ResNet38', 'ResNet54', | |
| 'MobileNetV1', 'MobileNetV2', 'DaiNet', 'LeeNet', 'LeeNet18', | |
| 'Res1dNet30', 'Res1dNet44', 'Wavegram-CNN', 'Wavegram-\nLogmel-CNN']) | |
| flops = np.array([21.986, 21.986, 42.220, 30.081, 48.962, 54.563, 3.614, 2.810, | |
| 30.395, 4.741, 26.369, 32.688, 61.833, 44.234, 53.510]) | |
| mAPs = np.array([0.343, 0.380, 0.431, 0.430, 0.434, 0.429, 0.389, 0.383, 0.295, | |
| 0.266, 0.336, 0.365, 0.355, 0.389, 0.439]) | |
| sorted_indexes = np.sort(flops) | |
| ax.scatter(flops, mAPs) | |
| shift = [[1, 0.002], [1, -0.006], [-1, -0.014], [-2, 0.006], [-7, 0.006], | |
| [1, -0.01], [0.5, 0.004], [-1, -0.014], [1, -0.007], [0.8, -0.008], | |
| [1, -0.007], [1, 0.002], [-6, -0.015], [1, -0.008], [0.8, 0]] | |
| for i, model_type in enumerate(model_types): | |
| ax.annotate(model_type, (flops[i] + shift[i][0], mAPs[i] + shift[i][1])) | |
| ax.plot(flops[[0, 1, 2]], mAPs[[0, 1, 2]]) | |
| ax.plot(flops[[3, 4, 5]], mAPs[[3, 4, 5]]) | |
| ax.plot(flops[[6, 7]], mAPs[[6, 7]]) | |
| ax.plot(flops[[9, 10]], mAPs[[9, 10]]) | |
| ax.plot(flops[[11, 12]], mAPs[[11, 12]]) | |
| ax.plot(flops[[13, 14]], mAPs[[13, 14]]) | |
| ax.set_xlim(0, 70) | |
| ax.set_ylim(0.2, 0.5) | |
| ax.set_xlabel('Multi-adds (million)') | |
| ax.set_ylabel('mAP') | |
| plt.tight_layout(0, 0, 0) | |
| plt.savefig(save_out_path) | |
| print('Write out figure to {}'.format(save_out_path)) | |
| def spearman(args): | |
| # Arguments & parameters | |
| workspace = args.workspace | |
| # Paths | |
| stat_path = os.path.join(workspace, 'results', 'stats_for_paper.pkl') | |
| # Stats | |
| stats = cPickle.load(open(stat_path, 'rb')) | |
| label_quality = np.array([qu if qu else 0.5 for qu in stats['label_quality']]) | |
| training_samples = np.array(stats['official_balanced_trainig_samples']) + \ | |
| np.array(stats['official_unbalanced_training_samples']) | |
| mAP = stats['averaging_instance_system_avg_9_probs_from_10000_to_50000_iterations']['eval']['average_precision'] | |
| import scipy | |
| samples_spearman = scipy.stats.spearmanr(training_samples, mAP)[0] | |
| quality_spearman = scipy.stats.spearmanr(label_quality, mAP)[0] | |
| print('Training samples spearman: {:.3f}'.format(samples_spearman)) | |
| print('Quality spearman: {:.3f}'.format(quality_spearman)) | |
| def print_results(args): | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'full_train', 'Cnn14_mixup_time_domain', 'clip_bce', 'balanced', 'mixup', 32) | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'balanced', 'none', 32) | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'full_train', 'Cnn14', 'clip_bce', 'none', 'none', 32) | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'none', 'none', 32) | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'balanced', 'none', 32) | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'balanced_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| # | |
| (mAP, mAUC, dprime) = _load_metrics0_classwise2('main', 32000, 1024, 320, 64, 50, 14000, 'full_train', 'Cnn13_emb32', 'clip_bce', 'balanced', 'mixup', 32) | |
| (mAP, mAUC, dprime) = _load_metrics0_classwise2('main', 32000, 1024, 320, 64, 50, 14000, 'full_train', 'Cnn13_emb128', 'clip_bce', 'balanced', 'mixup', 32) | |
| # partial | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'partial_0.8_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'partial_0.5_full_train', 'Cnn14', 'clip_bce', 'balanced', 'mixup', 32) | |
| # Sample rate | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'full_train', 'Cnn14_16k', 'clip_bce', 'balanced', 'mixup', 32) | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 64, 50, 14000, 'full_train', 'Cnn14_8k', 'clip_bce', 'balanced', 'mixup', 32) | |
| # Mel bins | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 128, 50, 14000, 'full_train', 'Cnn14_mel128', 'clip_bce', 'balanced', 'mixup', 32) | |
| (mAP, mAUC, dprime) = _load_metrics_classwise('main', 32000, 1024, 320, 32, 50, 14000, 'full_train', 'Cnn14_mel32', 'clip_bce', 'balanced', 'mixup', 32) | |
| import crash | |
| asdf | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser(description='') | |
| subparsers = parser.add_subparsers(dest='mode') | |
| parser_plot = subparsers.add_parser('plot') | |
| parser_plot.add_argument('--dataset_dir', type=str, required=True) | |
| parser_plot.add_argument('--workspace', type=str, required=True) | |
| parser_plot.add_argument('--select', type=str, required=True) | |
| parser_plot = subparsers.add_parser('plot_for_paper') | |
| parser_plot.add_argument('--dataset_dir', type=str, required=True) | |
| parser_plot.add_argument('--workspace', type=str, required=True) | |
| parser_plot.add_argument('--select', type=str, required=True) | |
| parser_plot = subparsers.add_parser('plot_for_paper2') | |
| parser_plot.add_argument('--dataset_dir', type=str, required=True) | |
| parser_plot.add_argument('--workspace', type=str, required=True) | |
| parser_values = subparsers.add_parser('plot_class_iteration') | |
| parser_values.add_argument('--workspace', type=str, required=True) | |
| parser_values.add_argument('--select', type=str, required=True) | |
| parser_summary_stats = subparsers.add_parser('summary_stats') | |
| parser_summary_stats.add_argument('--workspace', type=str, required=True) | |
| parser_plot_long = subparsers.add_parser('plot_long_fig') | |
| parser_plot_long.add_argument('--workspace', type=str, required=True) | |
| parser_plot_flops = subparsers.add_parser('plot_flops') | |
| parser_plot_flops.add_argument('--workspace', type=str, required=True) | |
| parser_spearman = subparsers.add_parser('spearman') | |
| parser_spearman.add_argument('--workspace', type=str, required=True) | |
| parser_print = subparsers.add_parser('print') | |
| parser_print.add_argument('--workspace', type=str, required=True) | |
| args = parser.parse_args() | |
| if args.mode == 'plot': | |
| plot(args) | |
| elif args.mode == 'plot_for_paper': | |
| plot_for_paper(args) | |
| elif args.mode == 'plot_for_paper2': | |
| plot_for_paper2(args) | |
| elif args.mode == 'table_values': | |
| table_values(args) | |
| elif args.mode == 'plot_class_iteration': | |
| plot_class_iteration(args) | |
| elif args.mode == 'summary_stats': | |
| summary_stats(args) | |
| elif args.mode == 'plot_long_fig': | |
| plot_long_fig(args) | |
| elif args.mode == 'plot_flops': | |
| plot_flops(args) | |
| elif args.mode == 'spearman': | |
| spearman(args) | |
| elif args.mode == 'print': | |
| print_results(args) | |
| else: | |
| raise Exception('Error argument!') |