import gradio as gr import pandas as pd import os import zipfile import base64 CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard, author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell}, title = {AI Energy Score Leaderboard - February 2025}, year = {2025}, publisher = {Hugging Face}, howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}", }""" # List of tasks (CSV filenames) tasks = [ 'asr.csv', 'object_detection.csv', 'text_classification.csv', 'image_captioning.csv', 'question_answering.csv', 'text_generation.csv', 'image_classification.csv', 'sentence_similarity.csv', 'image_generation.csv', 'summarization.csv' ] def format_stars(score): try: score_int = int(score) except Exception: score_int = 0 # Render stars in green with a slightly larger font. return f'{"★" * score_int}' def make_link(mname): parts = str(mname).split('/') display_name = parts[1] if len(parts) > 1 else mname return f'{display_name}' def extract_link_text(html_link): """Extracts the inner text from an HTML link.""" start = html_link.find('>') + 1 end = html_link.rfind('') if start > 0 and end > start: return html_link[start:end] else: return html_link def generate_html_table_from_df(df): """ Generates an HTML table with four columns: - Model (with link) - Provider (extracted from the model field) - GPU Energy (Wh) plus a horizontal bar - Score (as stars) """ if not df.empty: max_length = max(len(extract_link_text(link)) for link in df['Model']) else: max_length = 10 static_width = max_length * 10 + 16 max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1 color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"} html = '' html += '' html += '' html += '' html += '' html += '' html += '' html += '' for _, row in df.iterrows(): energy_numeric = row['gpu_energy_numeric'] energy_str = f"{energy_numeric:.2f}" bar_width = (energy_numeric / max_energy) * 100 score_val = row['energy_score'] bar_color = color_map.get(str(score_val), "gray") html += '' html += f'' html += f'' html += ( f'' ) html += f'' html += '' html += '
ModelProviderGPU Energy (Wh)Score
{row["Model"]}{row["Provider"]}{energy_str}
' f'
{row["Score"]}
' return f'
{html}
' # --- Functions for creating the efficiency difference callout cards --- def get_efficiency_diff_for_all(): """Calculates the efficiency difference across all models.""" all_df = pd.DataFrame() for task in tasks: df = pd.read_csv('data/energy/' + task) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 all_df = pd.concat([all_df, df], ignore_index=True) if all_df.empty: return "
No data available
" min_val = all_df['gpu_energy_numeric'].min() max_val = all_df['gpu_energy_numeric'].max() diff = max_val - min_val # A colorful gradient card for global stats. return ( f"
" f"All Models: Efficiency difference is {diff:.2f} Wh " f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)" f"
" ) def get_efficiency_diff_for_task(task_filename): """Calculates the efficiency difference for models in a given task.""" df = pd.read_csv('data/energy/' + task_filename) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 if df.empty: return "
No data available
" min_val = df['gpu_energy_numeric'].min() max_val = df['gpu_energy_numeric'].max() diff = max_val - min_val # A different gradient for the selected task return ( f"
" f"Selected Task: Efficiency difference is {diff:.2f} Wh " f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)" f"
" ) # --- Function to zip all CSV files (unchanged) --- def zip_csv_files(): data_dir = "data/energy" zip_filename = "data.zip" with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf: for filename in os.listdir(data_dir): if filename.endswith(".csv"): filepath = os.path.join(data_dir, filename) zipf.write(filepath, arcname=filename) return zip_filename def get_zip_data_link(): zip_filename = zip_csv_files() with open(zip_filename, "rb") as f: data = f.read() b64 = base64.b64encode(data).decode() href = ( f'Download Data' ) return href # --- Modified functions to include a sort_order parameter --- def get_model_names_html(task, sort_order="Low to High"): df = pd.read_csv('data/energy/' + task) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] df['energy_score'] = df['energy_score'].astype(int) df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 # Add Provider column (text before the slash in the model field) df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0]) df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) ascending = (sort_order == "Low to High") df = df.sort_values(by='gpu_energy_numeric', ascending=ascending) return generate_html_table_from_df(df) def get_all_model_names_html(sort_order="Low to High"): all_df = pd.DataFrame() for task in tasks: df = pd.read_csv('data/energy/' + task) if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] df['energy_score'] = df['energy_score'].astype(int) df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0]) df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) all_df = pd.concat([all_df, df], ignore_index=True) all_df = all_df.drop_duplicates(subset=['model']) ascending = (sort_order == "Low to High") all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending) return generate_html_table_from_df(all_df) def get_text_generation_model_names_html(model_class, sort_order="Low to High"): df = pd.read_csv('data/energy/text_generation.csv') if df.columns[0].startswith("Unnamed:"): df = df.iloc[:, 1:] if 'class' in df.columns: df = df[df['class'] == model_class] df['energy_score'] = df['energy_score'].astype(int) df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000 df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0]) df['Model'] = df['model'].apply(make_link) df['Score'] = df['energy_score'].apply(format_stars) ascending = (sort_order == "Low to High") df = df.sort_values(by='gpu_energy_numeric', ascending=ascending) return generate_html_table_from_df(df) # --- Update functions for dropdown changes --- def update_text_generation(selected_display, sort_order): mapping = { "A (Single Consumer GPU) <20B parameters": "A", "B (Single Cloud GPU) 20-66B parameters": "B", "C (Multiple Cloud GPUs) >66B parameters": "C" } model_class = mapping.get(selected_display, "A") table_html = get_text_generation_model_names_html(model_class, sort_order) # Update the task-specific callout for text generation task_diff_html = get_efficiency_diff_for_task('text_generation.csv') return table_html, task_diff_html def update_image_generation(sort_order): table_html = get_model_names_html('image_generation.csv', sort_order) task_diff_html = get_efficiency_diff_for_task('image_generation.csv') return table_html, task_diff_html def update_text_classification(sort_order): table_html = get_model_names_html('text_classification.csv', sort_order) task_diff_html = get_efficiency_diff_for_task('text_classification.csv') return table_html, task_diff_html def update_image_classification(sort_order): table_html = get_model_names_html('image_classification.csv', sort_order) task_diff_html = get_efficiency_diff_for_task('image_classification.csv') return table_html, task_diff_html def update_image_captioning(sort_order): table_html = get_model_names_html('image_captioning.csv', sort_order) task_diff_html = get_efficiency_diff_for_task('image_captioning.csv') return table_html, task_diff_html def update_summarization(sort_order): table_html = get_model_names_html('summarization.csv', sort_order) task_diff_html = get_efficiency_diff_for_task('summarization.csv') return table_html, task_diff_html def update_asr(sort_order): table_html = get_model_names_html('asr.csv', sort_order) task_diff_html = get_efficiency_diff_for_task('asr.csv') return table_html, task_diff_html def update_object_detection(sort_order): table_html = get_model_names_html('object_detection.csv', sort_order) task_diff_html = get_efficiency_diff_for_task('object_detection.csv') return table_html, task_diff_html def update_sentence_similarity(sort_order): table_html = get_model_names_html('sentence_similarity.csv', sort_order) task_diff_html = get_efficiency_diff_for_task('sentence_similarity.csv') return table_html, task_diff_html def update_extractive_qa(sort_order): table_html = get_model_names_html('question_answering.csv', sort_order) task_diff_html = get_efficiency_diff_for_task('question_answering.csv') return table_html, task_diff_html def update_all_tasks(sort_order): return get_all_model_names_html(sort_order) # --- Build the Gradio Interface --- demo = gr.Blocks(css=""" .gr-dataframe table { table-layout: fixed; width: 100%; } .gr-dataframe th, .gr-dataframe td { max-width: 150px; white-space: nowrap; overflow: hidden; text-overflow: ellipsis; } .table-container { width: 100%; margin-left: auto; margin-right: auto; } """) with demo: # --- Header Links --- gr.HTML(f'''
Submission Portal Label Generator FAQ Documentation {get_zip_data_link()} Community
''') # --- Logo and Subtitle --- gr.HTML('''
Logo
''') gr.Markdown('
Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.
') # --- Callout Cards (Row at the Top) --- with gr.Row(): all_models_card = gr.HTML(get_efficiency_diff_for_all()) # Initially, we show the stats for text_generation as default for the selected task. selected_task_card = gr.HTML(get_efficiency_diff_for_task('text_generation.csv')) # --- Tabs for the Different Tasks --- with gr.Tabs(): # --- Text Generation Tab --- with gr.TabItem("Text Generation 💬"): with gr.Row(): model_class_options = [ "A (Single Consumer GPU) <20B parameters", "B (Single Cloud GPU) 20-66B parameters", "C (Multiple Cloud GPUs) >66B parameters" ] model_class_dropdown = gr.Dropdown( choices=model_class_options, label="Select Model Class", value=model_class_options[0] ) sort_dropdown_tg = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) # Two outputs: the table and the task callout card. tg_table = gr.HTML(get_text_generation_model_names_html("A", "Low to High")) model_class_dropdown.change( fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=[tg_table, selected_task_card] ) sort_dropdown_tg.change( fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=[tg_table, selected_task_card] ) # --- Image Generation Tab --- with gr.TabItem("Image Generation 📷"): sort_dropdown_img = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) img_table = gr.HTML(get_model_names_html('image_generation.csv', "Low to High")) sort_dropdown_img.change( fn=update_image_generation, inputs=sort_dropdown_img, outputs=[img_table, selected_task_card] ) # --- Text Classification Tab --- with gr.TabItem("Text Classification 🎭"): sort_dropdown_tc = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) tc_table = gr.HTML(get_model_names_html('text_classification.csv', "Low to High")) sort_dropdown_tc.change( fn=update_text_classification, inputs=sort_dropdown_tc, outputs=[tc_table, selected_task_card] ) # --- Image Classification Tab --- with gr.TabItem("Image Classification 🖼️"): sort_dropdown_ic = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) ic_table = gr.HTML(get_model_names_html('image_classification.csv', "Low to High")) sort_dropdown_ic.change( fn=update_image_classification, inputs=sort_dropdown_ic, outputs=[ic_table, selected_task_card] ) # --- Image Captioning Tab --- with gr.TabItem("Image Captioning 📝"): sort_dropdown_icap = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) icap_table = gr.HTML(get_model_names_html('image_captioning.csv', "Low to High")) sort_dropdown_icap.change( fn=update_image_captioning, inputs=sort_dropdown_icap, outputs=[icap_table, selected_task_card] ) # --- Summarization Tab --- with gr.TabItem("Summarization 📃"): sort_dropdown_sum = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) sum_table = gr.HTML(get_model_names_html('summarization.csv', "Low to High")) sort_dropdown_sum.change( fn=update_summarization, inputs=sort_dropdown_sum, outputs=[sum_table, selected_task_card] ) # --- Automatic Speech Recognition Tab --- with gr.TabItem("Automatic Speech Recognition 💬"): sort_dropdown_asr = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) asr_table = gr.HTML(get_model_names_html('asr.csv', "Low to High")) sort_dropdown_asr.change( fn=update_asr, inputs=sort_dropdown_asr, outputs=[asr_table, selected_task_card] ) # --- Object Detection Tab --- with gr.TabItem("Object Detection 🚘"): sort_dropdown_od = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) od_table = gr.HTML(get_model_names_html('object_detection.csv', "Low to High")) sort_dropdown_od.change( fn=update_object_detection, inputs=sort_dropdown_od, outputs=[od_table, selected_task_card] ) # --- Sentence Similarity Tab --- with gr.TabItem("Sentence Similarity 📚"): sort_dropdown_ss = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) ss_table = gr.HTML(get_model_names_html('sentence_similarity.csv', "Low to High")) sort_dropdown_ss.change( fn=update_sentence_similarity, inputs=sort_dropdown_ss, outputs=[ss_table, selected_task_card] ) # --- Extractive QA Tab --- with gr.TabItem("Extractive QA ❔"): sort_dropdown_qa = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) qa_table = gr.HTML(get_model_names_html('question_answering.csv', "Low to High")) sort_dropdown_qa.change( fn=update_extractive_qa, inputs=sort_dropdown_qa, outputs=[qa_table, selected_task_card] ) # --- All Tasks Tab (only table update) --- with gr.TabItem("All Tasks 💡"): sort_dropdown_all = gr.Dropdown( choices=["Low to High", "High to Low"], label="Sort", value="Low to High" ) all_table = gr.HTML(get_all_model_names_html("Low to High")) sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=all_table) with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", lines=10, show_copy_button=True, ) gr.Markdown("Last updated: February 2025") demo.launch()