import gradio as gr
import pandas as pd
import os
import zipfile
import base64
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
title = {AI Energy Score Leaderboard - February 2025},
year = {2025},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""
# List of tasks (CSV filenames)
tasks = [
'asr.csv',
'object_detection.csv',
'text_classification.csv',
'image_captioning.csv',
'question_answering.csv',
'text_generation.csv',
'image_classification.csv',
'sentence_similarity.csv',
'image_generation.csv',
'summarization.csv'
]
def format_stars(score):
try:
score_int = int(score)
except Exception:
score_int = 0
# Render stars in green with a slightly larger font.
return f'{"★" * score_int}'
def make_link(mname):
parts = str(mname).split('/')
display_name = parts[1] if len(parts) > 1 else mname
return f'{display_name}'
def extract_link_text(html_link):
"""Extracts the inner text from an HTML link."""
start = html_link.find('>') + 1
end = html_link.rfind('')
if start > 0 and end > start:
return html_link[start:end]
else:
return html_link
def generate_html_table_from_df(df):
"""
Generates an HTML table with four columns:
- Model (with link)
- Provider (extracted from the model field)
- GPU Energy (Wh) plus a horizontal bar
- Score (as stars)
"""
if not df.empty:
max_length = max(len(extract_link_text(link)) for link in df['Model'])
else:
max_length = 10
static_width = max_length * 10 + 16
max_energy = df['gpu_energy_numeric'].max() if not df.empty else 1
color_map = {"1": "black", "2": "black", "3": "black", "4": "black", "5": "black"}
html = '
'
html += ''
html += 'Model | '
html += 'Provider | '
html += 'GPU Energy (Wh) | '
html += 'Score | '
html += '
'
html += ''
for _, row in df.iterrows():
energy_numeric = row['gpu_energy_numeric']
energy_str = f"{energy_numeric:.2f}"
bar_width = (energy_numeric / max_energy) * 100
score_val = row['energy_score']
bar_color = color_map.get(str(score_val), "gray")
html += ''
html += f'{row["Model"]} | '
html += f'{row["Provider"]} | '
html += (
f'{energy_str} '
f' | '
)
html += f'{row["Score"]} | '
html += '
'
html += '
'
return f'{html}
'
# --- Functions for creating the efficiency difference callout cards ---
def get_efficiency_diff_for_all():
"""Calculates the efficiency difference across all models."""
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
all_df = pd.concat([all_df, df], ignore_index=True)
if all_df.empty:
return "No data available
"
min_val = all_df['gpu_energy_numeric'].min()
max_val = all_df['gpu_energy_numeric'].max()
diff = max_val - min_val
# A colorful gradient card for global stats.
return (
f""
f"All Models: Efficiency difference is {diff:.2f} Wh "
f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)"
f"
"
)
def get_efficiency_diff_for_task(task_filename):
"""Calculates the efficiency difference for models in a given task."""
df = pd.read_csv('data/energy/' + task_filename)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
if df.empty:
return "No data available
"
min_val = df['gpu_energy_numeric'].min()
max_val = df['gpu_energy_numeric'].max()
diff = max_val - min_val
# A different gradient for the selected task
return (
f""
f"Selected Task: Efficiency difference is {diff:.2f} Wh "
f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)"
f"
"
)
# --- Function to zip all CSV files (unchanged) ---
def zip_csv_files():
data_dir = "data/energy"
zip_filename = "data.zip"
with zipfile.ZipFile(zip_filename, "w", zipfile.ZIP_DEFLATED) as zipf:
for filename in os.listdir(data_dir):
if filename.endswith(".csv"):
filepath = os.path.join(data_dir, filename)
zipf.write(filepath, arcname=filename)
return zip_filename
def get_zip_data_link():
zip_filename = zip_csv_files()
with open(zip_filename, "rb") as f:
data = f.read()
b64 = base64.b64encode(data).decode()
href = (
f'Download Data'
)
return href
# --- Modified functions to include a sort_order parameter ---
def get_model_names_html(task, sort_order="Low to High"):
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
# Add Provider column (text before the slash in the model field)
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
ascending = (sort_order == "Low to High")
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
return generate_html_table_from_df(df)
def get_all_model_names_html(sort_order="Low to High"):
all_df = pd.DataFrame()
for task in tasks:
df = pd.read_csv('data/energy/' + task)
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
df['energy_score'] = df['energy_score'].astype(int)
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
ascending = (sort_order == "Low to High")
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
return generate_html_table_from_df(all_df)
def get_text_generation_model_names_html(model_class, sort_order="Low to High"):
df = pd.read_csv('data/energy/text_generation.csv')
if df.columns[0].startswith("Unnamed:"):
df = df.iloc[:, 1:]
if 'class' in df.columns:
df = df[df['class'] == model_class]
df['energy_score'] = df['energy_score'].astype(int)
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
ascending = (sort_order == "Low to High")
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
return generate_html_table_from_df(df)
# --- Update functions for dropdown changes ---
def update_text_generation(selected_display, sort_order):
mapping = {
"A (Single Consumer GPU) <20B parameters": "A",
"B (Single Cloud GPU) 20-66B parameters": "B",
"C (Multiple Cloud GPUs) >66B parameters": "C"
}
model_class = mapping.get(selected_display, "A")
table_html = get_text_generation_model_names_html(model_class, sort_order)
# Update the task-specific callout for text generation
task_diff_html = get_efficiency_diff_for_task('text_generation.csv')
return table_html, task_diff_html
def update_image_generation(sort_order):
table_html = get_model_names_html('image_generation.csv', sort_order)
task_diff_html = get_efficiency_diff_for_task('image_generation.csv')
return table_html, task_diff_html
def update_text_classification(sort_order):
table_html = get_model_names_html('text_classification.csv', sort_order)
task_diff_html = get_efficiency_diff_for_task('text_classification.csv')
return table_html, task_diff_html
def update_image_classification(sort_order):
table_html = get_model_names_html('image_classification.csv', sort_order)
task_diff_html = get_efficiency_diff_for_task('image_classification.csv')
return table_html, task_diff_html
def update_image_captioning(sort_order):
table_html = get_model_names_html('image_captioning.csv', sort_order)
task_diff_html = get_efficiency_diff_for_task('image_captioning.csv')
return table_html, task_diff_html
def update_summarization(sort_order):
table_html = get_model_names_html('summarization.csv', sort_order)
task_diff_html = get_efficiency_diff_for_task('summarization.csv')
return table_html, task_diff_html
def update_asr(sort_order):
table_html = get_model_names_html('asr.csv', sort_order)
task_diff_html = get_efficiency_diff_for_task('asr.csv')
return table_html, task_diff_html
def update_object_detection(sort_order):
table_html = get_model_names_html('object_detection.csv', sort_order)
task_diff_html = get_efficiency_diff_for_task('object_detection.csv')
return table_html, task_diff_html
def update_sentence_similarity(sort_order):
table_html = get_model_names_html('sentence_similarity.csv', sort_order)
task_diff_html = get_efficiency_diff_for_task('sentence_similarity.csv')
return table_html, task_diff_html
def update_extractive_qa(sort_order):
table_html = get_model_names_html('question_answering.csv', sort_order)
task_diff_html = get_efficiency_diff_for_task('question_answering.csv')
return table_html, task_diff_html
def update_all_tasks(sort_order):
return get_all_model_names_html(sort_order)
# --- Build the Gradio Interface ---
demo = gr.Blocks(css="""
.gr-dataframe table {
table-layout: fixed;
width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
max-width: 150px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
.table-container {
width: 100%;
margin-left: auto;
margin-right: auto;
}
""")
with demo:
# --- Header Links ---
gr.HTML(f'''
''')
# --- Logo and Subtitle ---
gr.HTML('''
''')
gr.Markdown('Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.
')
# --- Callout Cards (Row at the Top) ---
with gr.Row():
all_models_card = gr.HTML(get_efficiency_diff_for_all())
# Initially, we show the stats for text_generation as default for the selected task.
selected_task_card = gr.HTML(get_efficiency_diff_for_task('text_generation.csv'))
# --- Tabs for the Different Tasks ---
with gr.Tabs():
# --- Text Generation Tab ---
with gr.TabItem("Text Generation 💬"):
with gr.Row():
model_class_options = [
"A (Single Consumer GPU) <20B parameters",
"B (Single Cloud GPU) 20-66B parameters",
"C (Multiple Cloud GPUs) >66B parameters"
]
model_class_dropdown = gr.Dropdown(
choices=model_class_options,
label="Select Model Class",
value=model_class_options[0]
)
sort_dropdown_tg = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
# Two outputs: the table and the task callout card.
tg_table = gr.HTML(get_text_generation_model_names_html("A", "Low to High"))
model_class_dropdown.change(
fn=update_text_generation,
inputs=[model_class_dropdown, sort_dropdown_tg],
outputs=[tg_table, selected_task_card]
)
sort_dropdown_tg.change(
fn=update_text_generation,
inputs=[model_class_dropdown, sort_dropdown_tg],
outputs=[tg_table, selected_task_card]
)
# --- Image Generation Tab ---
with gr.TabItem("Image Generation 📷"):
sort_dropdown_img = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
img_table = gr.HTML(get_model_names_html('image_generation.csv', "Low to High"))
sort_dropdown_img.change(
fn=update_image_generation,
inputs=sort_dropdown_img,
outputs=[img_table, selected_task_card]
)
# --- Text Classification Tab ---
with gr.TabItem("Text Classification 🎭"):
sort_dropdown_tc = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
tc_table = gr.HTML(get_model_names_html('text_classification.csv', "Low to High"))
sort_dropdown_tc.change(
fn=update_text_classification,
inputs=sort_dropdown_tc,
outputs=[tc_table, selected_task_card]
)
# --- Image Classification Tab ---
with gr.TabItem("Image Classification 🖼️"):
sort_dropdown_ic = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
ic_table = gr.HTML(get_model_names_html('image_classification.csv', "Low to High"))
sort_dropdown_ic.change(
fn=update_image_classification,
inputs=sort_dropdown_ic,
outputs=[ic_table, selected_task_card]
)
# --- Image Captioning Tab ---
with gr.TabItem("Image Captioning 📝"):
sort_dropdown_icap = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
icap_table = gr.HTML(get_model_names_html('image_captioning.csv', "Low to High"))
sort_dropdown_icap.change(
fn=update_image_captioning,
inputs=sort_dropdown_icap,
outputs=[icap_table, selected_task_card]
)
# --- Summarization Tab ---
with gr.TabItem("Summarization 📃"):
sort_dropdown_sum = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
sum_table = gr.HTML(get_model_names_html('summarization.csv', "Low to High"))
sort_dropdown_sum.change(
fn=update_summarization,
inputs=sort_dropdown_sum,
outputs=[sum_table, selected_task_card]
)
# --- Automatic Speech Recognition Tab ---
with gr.TabItem("Automatic Speech Recognition 💬"):
sort_dropdown_asr = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
asr_table = gr.HTML(get_model_names_html('asr.csv', "Low to High"))
sort_dropdown_asr.change(
fn=update_asr,
inputs=sort_dropdown_asr,
outputs=[asr_table, selected_task_card]
)
# --- Object Detection Tab ---
with gr.TabItem("Object Detection 🚘"):
sort_dropdown_od = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
od_table = gr.HTML(get_model_names_html('object_detection.csv', "Low to High"))
sort_dropdown_od.change(
fn=update_object_detection,
inputs=sort_dropdown_od,
outputs=[od_table, selected_task_card]
)
# --- Sentence Similarity Tab ---
with gr.TabItem("Sentence Similarity 📚"):
sort_dropdown_ss = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
ss_table = gr.HTML(get_model_names_html('sentence_similarity.csv', "Low to High"))
sort_dropdown_ss.change(
fn=update_sentence_similarity,
inputs=sort_dropdown_ss,
outputs=[ss_table, selected_task_card]
)
# --- Extractive QA Tab ---
with gr.TabItem("Extractive QA ❔"):
sort_dropdown_qa = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
qa_table = gr.HTML(get_model_names_html('question_answering.csv', "Low to High"))
sort_dropdown_qa.change(
fn=update_extractive_qa,
inputs=sort_dropdown_qa,
outputs=[qa_table, selected_task_card]
)
# --- All Tasks Tab (only table update) ---
with gr.TabItem("All Tasks 💡"):
sort_dropdown_all = gr.Dropdown(
choices=["Low to High", "High to Low"],
label="Sort",
value="Low to High"
)
all_table = gr.HTML(get_all_model_names_html("Low to High"))
sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=all_table)
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
show_copy_button=True,
)
gr.Markdown("Last updated: February 2025")
demo.launch()