Spaces:
Running
Running
File size: 10,628 Bytes
e7cbd6a 460fdc7 e7cbd6a 42e8f64 e7cbd6a 5dc7166 e7cbd6a 5dc7166 e7cbd6a 5dc7166 e7cbd6a 5dc7166 e7cbd6a 5dc7166 e7cbd6a 5dc7166 e7cbd6a fe6b2ac 5dc7166 e7cbd6a f7b4006 fe6b2ac e7cbd6a fe6b2ac e7cbd6a fe6b2ac e7cbd6a fe6b2ac e7cbd6a fe6b2ac e7cbd6a fe6b2ac e7cbd6a fe6b2ac f66e432 ef24be8 f66e432 e7cbd6a f66e432 fe6b2ac e7cbd6a 5dc7166 e7cbd6a 5dc7166 e7cbd6a 5dc7166 e7cbd6a 5dc7166 e7cbd6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import os, glob
import json
from datetime import datetime, timezone
from dataclasses import dataclass
from datasets import load_dataset, Dataset
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, snapshot_download, ModelInfo, list_models
from enum import Enum
OWNER = "AIEnergyScore"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)
task_mappings = {
'automatic speech recognition': 'automatic-speech-recognition',
'Object Detection': 'object-detection',
'Text Classification': 'text-classification',
'Image to Text': 'image-to-text',
'Question Answering': 'question-answering',
'Text Generation': 'text-generation',
'Image Classification': 'image-classification',
'Sentence Similarity': 'sentence-similarity',
'Image Generation': 'image-generation',
'Summarization': 'summarization'
}
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
def start_compute_space():
API.restart_space(COMPUTE_SPACE)
gr.Info(f"Okay! {COMPUTE_SPACE} should be running now!")
def get_model_size(model_info: ModelInfo):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0
return model_size
def add_docker_eval(zip_file):
new_fid_list = zip_file.split("/")
new_fid = new_fid_list[-1]
if new_fid.endswith('.zip'):
API.upload_file(
path_or_fileobj=zip_file,
repo_id="AIEnergyScore/tested_proprietary_models",
path_in_repo='submitted_models/' + new_fid,
repo_type="dataset",
commit_message="Adding logs via submission Space.",
token=TOKEN
)
gr.Info('Uploaded logs to dataset! We will validate their validity and add them to the next version of the leaderboard.')
else:
gr.Info('You can only upload .zip files here!')
def add_new_eval(repo_id: str, task: str):
model_owner = repo_id.split("/")[0]
model_name = repo_id.split("/")[1]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
requests_dset = requests.to_pandas()
model_list = requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist()
task_models = list(API.list_models(filter=task_mappings[task]))
task_model_names = [m.id for m in task_models]
if repo_id in model_list:
gr.Info('This model has already been run!')
elif repo_id not in task_model_names:
gr.Info("This model isn't compatible with the chosen task! Pick a different model-task combination")
else:
try:
model_info = API.model_info(repo_id=repo_id)
model_size = get_model_size(model_info=model_info)
likes = model_info.likes
except Exception:
gr.Info("Could not find information for model %s" % (model_name))
model_size = None
likes = None
gr.Info("Adding request")
request_dict = {
"model": repo_id,
"status": "PENDING",
"submitted_time": pd.to_datetime(current_time),
"task": task_mappings[task],
"likes": likes,
"params": model_size,
"leaderboard_version": "v0",
}
print("Writing out request file to dataset")
df_request_dict = pd.DataFrame([request_dict])
print(df_request_dict)
df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True)
updated_dset = Dataset.from_pandas(df_final)
updated_dset.push_to_hub("AIEnergyScore/requests_debug", split="test", token=TOKEN)
gr.Info("Starting compute space at %s " % COMPUTE_SPACE)
return start_compute_space()
def print_existing_models():
requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
requests_dset = requests.to_pandas()
model_df = requests_dset[['model', 'status']]
model_df = model_df[model_df['status'] == 'COMPLETED']
return model_df
def highlight_cols(x):
df = x.copy()
df[df['status'] == 'COMPLETED'] = 'color: green'
df[df['status'] == 'PENDING'] = 'color: orange'
df[df['status'] == 'FAILED'] = 'color: red'
return df
# Applying the style function for the table
existing_models = print_existing_models()
formatted_df = existing_models.style.apply(highlight_cols, axis=None)
def get_leaderboard_models():
path = r'leaderboard_v0_data/energy'
filenames = glob.glob(path + "/*.csv")
data = []
for filename in filenames:
data.append(pd.read_csv(filename))
leaderboard_data = pd.concat(data, ignore_index=True)
return leaderboard_data[['model', 'task']]
def get_zip_data_link():
return (
'<a href="https://example.com/download.zip" '
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
'color: black; font-family: \'Inter\', sans-serif;">Download Logs</a>'
)
with gr.Blocks() as demo:
# --- Custom CSS for layout and styling ---
gr.HTML('''
<style>
/* Evenly space the header links */
.header-links {
display: flex;
justify-content: space-evenly;
align-items: center;
margin: 10px 0;
}
/* Center the subtitle text */
.centered-subtitle {
text-align: center;
font-size: 1.2em;
margin-bottom: 20px;
}
/* Full width container for matching widget edges */
.full-width {
width: 100% !important;
}
</style>
''')
# --- Header Links (at the very top) ---
with gr.Row(elem_classes="header-links"):
submission_link = gr.HTML(
'<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" '
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
'color: black; font-family: \'Inter\', sans-serif;">Submission Portal</a>'
)
label_link = gr.HTML(
'<a href="https://huggingface.co/spaces/AIEnergyScore/Label" '
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
'color: black; font-family: \'Inter\', sans-serif;">Label Generator</a>'
)
faq_link = gr.HTML(
'<a href="https://huggingface.github.io/AIEnergyScore/#faq" '
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
'color: black; font-family: \'Inter\', sans-serif;">FAQ</a>'
)
documentation_link = gr.HTML(
'<a href="https://huggingface.github.io/AIEnergyScore/#documentation" '
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
'color: black; font-family: \'Inter\', sans-serif;">Documentation</a>'
)
download_link = gr.HTML(get_zip_data_link())
community_link = gr.HTML(
'<a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" '
'style="text-decoration: none; font-weight: bold; font-size: 1.1em; '
'color: black; font-family: \'Inter\', sans-serif;">Community</a>'
)
# --- Logo (centered) ---
gr.HTML('''
<div style="margin-top: 0px;">
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
alt="Logo"
style="display: block; margin: 0 auto; max-width: 400px; height: auto;">
</div>
''')
# --- Subtitle (centered) ---
gr.Markdown('<p class="centered-subtitle">Welcome to the AI Energy Score Leaderboard. Select the task to see scored model results.</p>')
# --- Main UI Container (ensuring matching edges) ---
with gr.Column(elem_classes="full-width"):
with gr.Row():
with gr.Column():
task = gr.Dropdown(
choices=list(task_mappings.keys()),
label="Choose a benchmark task",
value='Text Generation',
multiselect=False,
interactive=True,
)
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
with gr.Row():
with gr.Column():
submit_button = gr.Button("Submit for Analysis")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[model_name_textbox, task],
outputs=submission_result,
)
# --- Docker Log Submission (Simplified) ---
with gr.Accordion("Submit log files from a Docker run:", open=False):
gr.Markdown("""
**⚠️ Warning: By uploading the zip file, you confirm that you have read and agree to the following terms:**
- **Public Data Sharing:** You consent to the public sharing of the energy performance data derived from your submission. No additional information related to this model, including proprietary configurations, will be disclosed.
- **Data Integrity:** You certify that the log files submitted are accurate, unaltered, and generated directly from testing your model as per the specified benchmarking procedures.
- **Model Representation:** You affirm that the model tested and submitted is representative of the production-level version, including its level of quantization and any other relevant characteristics impacting energy efficiency and performance.
""")
file_output = gr.File(visible=False)
u = gr.UploadButton("Upload a zip file with logs", file_count="single", interactive=True)
u.upload(add_docker_eval, u, file_output)
# --- Leaderboard and Recent Models Accordions ---
with gr.Row():
with gr.Column():
with gr.Accordion("Models that are in the latest leaderboard version:", open=False, visible=False):
gr.Dataframe(get_leaderboard_models(), elem_classes="full-width")
with gr.Accordion("Models that have been benchmarked recently:", open=False, visible=False):
gr.Dataframe(formatted_df, elem_classes="full-width")
demo.launch()
|