# gradio_UI.py import os import re import mimetypes import shutil from typing import Optional import gradio as gr from smolagents.agent_types import AgentText, AgentImage, AgentAudio, handle_agent_output_types from smolagents.agents import ActionStep, MultiStepAgent from smolagents.memory import MemoryStep from smolagents.utils import _is_package_available def pull_messages_from_step(step_log: MemoryStep): if isinstance(step_log, ActionStep): step_number = f"Step {step_log.step_number}" if step_log.step_number is not None else "" yield gr.ChatMessage(role="assistant", content=f"**{step_number}**") if hasattr(step_log, "model_output") and step_log.model_output is not None: model_output = re.sub(r"```.?\s*", "```", step_log.model_output.strip()) yield gr.ChatMessage(role="assistant", content=model_output) if hasattr(step_log, "tool_calls") and step_log.tool_calls: tool_call = step_log.tool_calls[0] content = str(tool_call.arguments.get("answer", tool_call.arguments)) if isinstance(tool_call.arguments, dict) else str(tool_call.arguments) if tool_call.name == "python_interpreter": content = f"```python\n{re.sub(r'', '', content).strip()}\n```" tool_msg = gr.ChatMessage( role="assistant", content=content, metadata={"title": f"🛠️ Used tool {tool_call.name}", "id": "tool_call", "status": "pending"}, ) yield tool_msg if step_log.observations: yield gr.ChatMessage(role="assistant", content=step_log.observations.strip(), metadata={"title": "📝 Execution Logs", "parent_id": "tool_call", "status": "done"}) if step_log.error: yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error", "parent_id": "tool_call", "status": "done"}) tool_msg.metadata["status"] = "done" elif step_log.error: yield gr.ChatMessage(role="assistant", content=str(step_log.error), metadata={"title": "💥 Error"}) meta = f"Input tokens: {getattr(step_log, 'input_token_count', 0)} | Output tokens: {getattr(step_log, 'output_token_count', 0)} | Duration: {round(getattr(step_log, 'duration', 0), 2)}" yield gr.ChatMessage(role="assistant", content=meta) yield gr.ChatMessage(role="assistant", content="-----") def stream_to_gradio(agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None): total_input_tokens = 0 total_output_tokens = 0 for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): if hasattr(agent.model, "last_input_token_count"): total_input_tokens += agent.model.last_input_token_count total_output_tokens += agent.model.last_output_token_count if isinstance(step_log, ActionStep): step_log.input_token_count = agent.model.last_input_token_count step_log.output_token_count = agent.model.last_output_token_count for message in pull_messages_from_step(step_log): yield message final_answer = handle_agent_output_types(step_log) if isinstance(final_answer, AgentText): yield gr.ChatMessage(role="assistant", content=f"**Final answer:**\n{final_answer.to_string()}") elif isinstance(final_answer, AgentImage): yield gr.ChatMessage(role="assistant", content={"path": final_answer.to_string(), "mime_type": "image/png"}) elif isinstance(final_answer, AgentAudio): yield gr.ChatMessage(role="assistant", content={"path": final_answer.to_string(), "mime_type": "audio/wav"}) else: yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") class GradioUI: def __init__(self, agent: MultiStepAgent): if not _is_package_available("gradio"): raise ModuleNotFoundError("Please install 'gradio' with: pip install 'smolagents[gradio]'") self.agent = agent def interact_with_agent(self, prompt, messages): messages.append(gr.ChatMessage(role="user", content=prompt)) yield messages for msg in stream_to_gradio(self.agent, task=prompt): messages.append(msg) yield messages yield messages def launch(self): with gr.Blocks(fill_height=True) as demo: stored_messages = gr.State([]) chatbot = gr.Chatbot(label="🌍 Mood-Based Travel Agent", type="messages") user_input = gr.Textbox(lines=1, label="Describe your mood") user_input.submit( lambda text, hist: (hist + [gr.ChatMessage(role="user", content=text)], ""), [user_input, stored_messages], [stored_messages, user_input], ).then(self.interact_with_agent, [user_input, stored_messages], [chatbot]) demo.launch(debug=True, share=True) __all__ = ["GradioUI", "stream_to_gradio"]