Spaces:
Running
Running
File size: 27,918 Bytes
6f99d02 775d6d5 6f99d02 dd6de00 6f99d02 8de1897 6f99d02 84b695c 6f99d02 96244d2 6f99d02 e6162d3 6f99d02 b61ee91 6f99d02 b61ee91 6f99d02 b61ee91 6f99d02 b61ee91 6f99d02 b61ee91 6f99d02 6e1cb9e 6f99d02 2bfffa6 84b695c 6f99d02 dd6de00 84b695c 6f99d02 84b695c 6f99d02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
import os
import io
import uuid
import base64
from typing import Dict, List, Optional, Any, Union
from pathlib import Path
import aiohttp
from fastapi import FastAPI, HTTPException, BackgroundTasks, Depends, Header, Request
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import asyncio
import uvicorn
from datetime import datetime
import time
# Import all TTI providers
from webscout.Provider.TTI import (
# Import all image providers
BlackboxAIImager, AsyncBlackboxAIImager,
DeepInfraImager, AsyncDeepInfraImager,
AiForceimager, AsyncAiForceimager,
NexraImager, AsyncNexraImager,
FreeAIImager, AsyncFreeAIImager,
NinjaImager, AsyncNinjaImager,
TalkaiImager, AsyncTalkaiImager,
PiclumenImager, AsyncPiclumenImager,
ArtbitImager, AsyncArtbitImager,
HFimager, AsyncHFimager,
)
try:
from webscout.Provider.TTI import AIArtaImager, AsyncAIArtaImager
AIARTA_AVAILABLE = True
except ImportError:
AIARTA_AVAILABLE = False
# Create FastAPI instance
app = FastAPI(
title="WebScout TTI API Server",
description="API server for Text-to-Image generation using various providers with OpenAI-compatible interface",
version="1.0.0",
)
# Add CORS middleware to allow cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Storage for generated images (in-memory for demo purposes)
# In a production environment, you might want to store these in a database or a file system
IMAGE_STORAGE = {}
# Simple API key verification (demo purposes only)
# In production, you'd want a more secure authentication system
API_KEYS = {"sk-demo-key": "demo"}
# Provider mapping
PROVIDER_MAP = {
"blackbox": {
"class": AsyncBlackboxAIImager,
"description": "High-performance image generation with advanced retry mechanisms"
},
"deepinfra": {
"class": AsyncDeepInfraImager,
"description": "Powerful image generation using FLUX-1-schnell and other models"
},
"aiforce": {
"class": AsyncAiForceimager,
"description": "Advanced AI image generation with 12 specialized models"
},
"nexra": {
"class": AsyncNexraImager,
"description": "Next-gen image creation with 19+ models"
},
"freeai": {
"class": AsyncFreeAIImager,
"description": "Premium image generation with DALL-E 3 and Flux series models"
},
"ninja": {
"class": AsyncNinjaImager,
"description": "Ninja-fast image generation with cyberpunk-themed logging"
},
"talkai": {
"class": AsyncTalkaiImager,
"description": "Fast and reliable image generation with comprehensive error handling"
},
"piclumen": {
"class": AsyncPiclumenImager,
"description": "Professional photorealistic image generation with advanced processing"
},
"artbit": {
"class": AsyncArtbitImager,
"description": "Bit-perfect AI art creation with precise control over parameters"
},
"huggingface": {
"class": AsyncHFimager,
"description": "Direct integration with HuggingFace's powerful models"
},
}
# Add AIArta provider if available
if AIARTA_AVAILABLE:
PROVIDER_MAP["aiarta"] = {
"class": AsyncAIArtaImager,
"description": "Generate stunning AI art with AI Arta with 45+ artistic styles"
}
# Provider model info
PROVIDER_MODEL_INFO = {
"blackbox": {
"default": "blackbox-default",
"models": ["blackbox-default"],
"default_params": {}
},
"deepinfra": {
"default": "flux-1-schnell",
"models": ["flux-1-schnell"],
"default_params": {
"num_inference_steps": 25,
"guidance_scale": 7.5,
"width": 1024,
"height": 1024
}
},
"aiforce": {
"default": "flux-1-pro",
"models": [
"stable-diffusion-xl-lightning",
"stable-diffusion-xl-base",
"flux-1-pro",
"ideogram",
"flux",
"flux-realism",
"flux-anime",
"flux-3d",
"flux-disney",
"flux-pixel",
"flux-4o",
"any-dark"
],
"default_params": {
"width": 768,
"height": 768
}
},
"nexra": {
"default": "midjourney",
"models": [
"emi",
"stablediffusion-1-5",
"stablediffusion-2-1",
"sdxl-lora",
"dalle",
"dalle2",
"dalle-mini",
"flux",
"midjourney",
"dreamshaper-xl",
"dynavision-xl",
"juggernaut-xl",
"realism-engine-sdxl",
"sd-xl-base-1-0",
"animagine-xl-v3",
"sd-xl-base-inpainting",
"turbovision-xl",
"devlish-photorealism-sdxl",
"realvis-xl-v4"
],
"default_params": {}
},
"freeai": {
"default": "dall-e-3",
"models": [
"dall-e-3",
"flux-pro-ultra",
"flux-pro",
"flux-pro-ultra-raw",
"flux-schnell",
"flux-realism",
"grok-2-aurora"
],
"default_params": {
"size": "1024x1024",
"quality": "standard",
"style": "vivid"
}
},
"ninja": {
"default": "flux-dev",
"models": ["stable-diffusion", "flux-dev"],
"default_params": {}
},
"talkai": {
"default": "talkai-default",
"models": ["talkai-default"],
"default_params": {}
},
"piclumen": {
"default": "piclumen-default",
"models": ["piclumen-default"],
"default_params": {}
},
"artbit": {
"default": "sdxl",
"models": ["sdxl", "sd"],
"default_params": {
"selected_ratio": "1024"
}
},
"huggingface": {
"default": "stable-diffusion-xl-base-1-0",
"models": ["stable-diffusion-xl-base-1-0", "stable-diffusion-v1-5"],
"default_params": {
"guidance_scale": 7.5,
"num_inference_steps": 30
}
}
}
# Normalize model names to OpenAI-like format
for provider, info in PROVIDER_MODEL_INFO.items():
info["models"] = [model.replace("/", "-").replace(".", "-").replace("_", "-").lower() for model in info["models"]]
info["default"] = info["default"].replace("/", "-").replace(".", "-").replace("_", "-").lower()
# Add AIArta model info if available
if AIARTA_AVAILABLE:
PROVIDER_MODEL_INFO["aiarta"] = {
"default": "flux",
"models": [
"flux", "medieval", "vincent-van-gogh", "f-dev", "low-poly",
"dreamshaper-xl", "anima-pencil-xl", "biomech", "trash-polka",
"no-style", "cheyenne-xl", "chicano", "embroidery-tattoo",
"red-and-black", "fantasy-art", "watercolor", "dotwork",
"old-school-colored", "realistic-tattoo", "japanese-2",
"realistic-stock-xl", "f-pro", "revanimated", "katayama-mix-xl",
"sdxl-l", "cor-epica-xl", "anime-tattoo", "new-school",
"death-metal", "old-school", "juggernaut-xl", "photographic",
"sdxl-1-0", "graffiti", "mini-tattoo", "surrealism",
"neo-traditional", "on-limbs-black", "yamers-realistic-xl",
"pony-xl", "playground-xl", "anything-xl", "flame-design",
"kawaii", "cinematic-art", "professional", "flux-black-ink"
],
"default_params": {
"negative_prompt": "blurry, deformed hands, ugly",
"guidance_scale": 7,
"num_inference_steps": 30,
"aspect_ratio": "1:1"
}
}
# Define Pydantic models for request and response validation (OpenAI-compatible)
class ImageSize(BaseModel):
width: int = Field(1024, description="Image width")
height: int = Field(1024, description="Image height")
class ImageGenerationRequest(BaseModel):
model: str = Field(..., description="The model to use for image generation")
prompt: str = Field(..., description="The prompt to generate images from")
n: Optional[int] = Field(1, description="Number of images to generate", ge=1, le=10)
size: Optional[str] = Field("1024x1024", description="Image size in format WIDTHxHEIGHT")
response_format: Optional[str] = Field("url", description="The format in which the generated images are returned", enum=["url", "b64_json"])
user: Optional[str] = Field(None, description="A unique identifier for the user")
style: Optional[str] = Field(None, description="Style for the generation")
quality: Optional[str] = Field(None, description="Quality level for the generation")
negative_prompt: Optional[str] = Field(None, description="What to avoid in the generated image")
class ImageData(BaseModel):
url: Optional[str] = Field(None, description="The URL of the generated image")
b64_json: Optional[str] = Field(None, description="Base64 encoded JSON string of the image")
revised_prompt: Optional[str] = Field(None, description="The prompt after any revisions")
class ImageGenerationResponse(BaseModel):
created: int = Field(..., description="Unix timestamp for when the request was created")
data: List[ImageData] = Field(..., description="List of generated images")
class ModelsListResponse(BaseModel):
object: str = Field("list", description="Object type")
data: List[Dict[str, Any]] = Field(..., description="List of available models")
class ErrorResponse(BaseModel):
error: Dict[str, Any] = Field(..., description="Error details")
# Error handling
class APIError(Exception):
def __init__(self, message, code=400, param=None, type="invalid_request_error"):
self.message = message
self.code = code
self.param = param
self.type = type
# Authentication dependency
async def verify_api_key(authorization: Optional[str] = Header(None)):
if authorization is None:
raise HTTPException(
status_code=401,
detail={
"error": {
"message": "No API key provided",
"type": "authentication_error",
"param": None,
"code": "no_api_key"
}
}
)
# Extract the key from the Authorization header
parts = authorization.split()
if len(parts) != 2 or parts[0].lower() != "bearer":
raise HTTPException(
status_code=401,
detail={
"error": {
"message": "Invalid authentication format. Use 'Bearer YOUR_API_KEY'",
"type": "authentication_error",
"param": None,
"code": "invalid_auth_format"
}
}
)
api_key = parts[1]
# Check if the API key is valid
# In production, you'd want to use a more secure method
if api_key not in API_KEYS:
raise HTTPException(
status_code=401,
detail={
"error": {
"message": "Invalid API key",
"type": "authentication_error",
"param": None,
"code": "invalid_api_key"
}
}
)
return api_key
# Find provider from model ID - updating this function to support provider/model format
def get_provider_for_model(model: str):
model = model.lower()
# Check if it's in the format 'provider/model'
if "/" in model:
provider_name, model_name = model.split("/", 1)
model_name = model_name.replace("/", "-").replace(".", "-").replace("_", "-").lower()
# Check if provider exists
if provider_name not in PROVIDER_MAP:
raise APIError(
message=f"Provider '{provider_name}' not found",
code=404,
type="provider_not_found"
)
# Check if model exists for this provider
provider_models = PROVIDER_MODEL_INFO[provider_name]["models"]
if model_name not in provider_models:
# Try searching with less normalization - some providers might use underscore variants
original_model_name = model_name.replace("-", "_")
if original_model_name not in [m.replace("-", "_") for m in provider_models]:
raise APIError(
message=f"Model '{model_name}' not found for provider '{provider_name}'",
code=404,
type="model_not_found"
)
return provider_name, model_name
# If not in provider/model format, search all providers (original behavior)
for provider_name, provider_info in PROVIDER_MODEL_INFO.items():
# Check if this model belongs to this provider
if model in provider_info["models"] or model == provider_info["default"]:
return provider_name, model
# If no provider found, return error
raise APIError(
message=f"Model '{model}' not found",
code=404,
type="model_not_found"
)
# Health check endpoint
@app.get("/health", response_model=Dict[str, str])
async def health_check():
return {"status": "ok"}
# OpenAI-compatible endpoints
# List available models
@app.get("/v1/models", response_model=ModelsListResponse, dependencies=[Depends(verify_api_key)])
async def list_models():
models_data = []
for provider_name, provider_info in PROVIDER_MODEL_INFO.items():
provider_description = PROVIDER_MAP.get(provider_name, {}).get("description", "")
for model_name in provider_info["models"]:
is_default = model_name == provider_info["default"]
models_data.append({
"id": model_name,
"object": "model",
"created": int(time.time()),
"owned_by": provider_name,
"permission": [],
"root": model_name,
"parent": None,
"description": f"{provider_description} - {'Default model' if is_default else 'Alternative model'}",
})
return {
"object": "list",
"data": models_data
}
# Get model information
@app.get("/v1/models/{model_id}", dependencies=[Depends(verify_api_key)])
async def get_model(model_id: str):
try:
provider_name, model = get_provider_for_model(model_id)
provider_description = PROVIDER_MAP.get(provider_name, {}).get("description", "")
return {
"id": model,
"object": "model",
"created": int(time.time()),
"owned_by": provider_name,
"permission": [],
"root": model,
"parent": None,
"description": provider_description
}
except APIError as e:
return JSONResponse(
status_code=e.code,
content={"error": {"message": e.message, "type": e.type, "param": e.param, "code": e.code}}
)
# Generate images
@app.post("/v1/images/generations", response_model=ImageGenerationResponse, dependencies=[Depends(verify_api_key)])
async def create_image(request: ImageGenerationRequest, background_tasks: BackgroundTasks):
try:
# Get provider for the requested model
provider_name, model = get_provider_for_model(request.model)
provider_class = PROVIDER_MAP[provider_name]["class"]
# Parse size
width, height = 1024, 1024
if request.size:
try:
size_parts = request.size.split("x")
if len(size_parts) == 2:
width, height = int(size_parts[0]), int(size_parts[1])
else:
width = height = int(size_parts[0])
except:
pass
# Create task ID
task_id = str(uuid.uuid4())
IMAGE_STORAGE[task_id] = {"status": "processing", "images": []}
# Get default params and update with user-provided values
default_params = PROVIDER_MODEL_INFO[provider_name].get("default_params", {}).copy()
# Add additional parameters from the request
if request.negative_prompt:
default_params["negative_prompt"] = request.negative_prompt
if request.quality:
default_params["quality"] = request.quality
if request.style:
default_params["style"] = request.style
# Update size parameters
default_params["width"] = width
default_params["height"] = height
# Function to generate images in the background
async def generate_images():
try:
# Initialize provider based on the provider name
if provider_name == "freeai":
provider_instance = provider_class(model=model)
elif provider_name == "deepinfra" and "-flux-" in model:
# Convert back to model format expected by provider
original_model = "black-forest-labs/FLUX-1-schnell"
provider_instance = provider_class(model=original_model)
else:
provider_instance = provider_class()
# Generate images with provider-specific parameters
# Each provider may have different parameter requirements
if provider_name == "aiforce":
images = await provider_instance.generate(
prompt=request.prompt,
amount=request.n,
model=model.replace("-", "_"), # Convert back to format used by provider
width=default_params.get("width", 768),
height=default_params.get("height", 768),
seed=default_params.get("seed", None)
)
elif provider_name == "deepinfra":
images = await provider_instance.generate(
prompt=request.prompt,
amount=request.n,
num_inference_steps=default_params.get("num_inference_steps", 25),
guidance_scale=default_params.get("guidance_scale", 7.5),
width=default_params.get("width", 1024),
height=default_params.get("height", 1024),
seed=default_params.get("seed", None)
)
elif provider_name == "nexra":
# Convert back to original model format
original_model = model.replace("-", "_")
images = await provider_instance.generate(
prompt=request.prompt,
amount=request.n,
model=original_model,
additional_params=default_params
)
elif provider_name == "freeai":
images = await provider_instance.generate(
prompt=request.prompt,
amount=request.n,
size=f"{width}x{height}",
quality=default_params.get("quality", "standard"),
style=default_params.get("style", "vivid")
)
elif provider_name == "ninja":
images = await provider_instance.generate(
prompt=request.prompt,
amount=request.n,
model=model.replace("-", "_")
)
elif provider_name == "artbit":
images = await provider_instance.generate(
prompt=request.prompt,
amount=request.n,
caption_model=model,
selected_ratio=default_params.get("selected_ratio", "1024"),
negative_prompt=default_params.get("negative_prompt", "")
)
elif provider_name == "huggingface":
# Convert from dash format to slash format for HF
original_model = model.replace("-", "/")
images = await provider_instance.generate(
prompt=request.prompt,
amount=request.n,
model=original_model,
guidance_scale=default_params.get("guidance_scale", 7.5),
negative_prompt=default_params.get("negative_prompt", None),
num_inference_steps=default_params.get("num_inference_steps", 30),
width=width,
height=height
)
elif provider_name == "aiarta" and AIARTA_AVAILABLE:
images = await provider_instance.generate(
prompt=request.prompt,
amount=request.n,
model=model,
negative_prompt=default_params.get("negative_prompt", "blurry, deformed hands, ugly"),
guidance_scale=default_params.get("guidance_scale", 7),
num_inference_steps=default_params.get("num_inference_steps", 30),
aspect_ratio=default_params.get("aspect_ratio", "1:1")
)
else:
# Default case for providers with simpler interfaces
images = await provider_instance.generate(
prompt=request.prompt,
amount=request.n
)
# Process and store the generated images
for i, img in enumerate(images):
# Handle both URL strings and binary data
if isinstance(img, str):
# For providers that return URLs instead of binary data
async with aiohttp.ClientSession() as session:
async with session.get(img) as resp:
resp.raise_for_status()
img_data = await resp.read()
else:
img_data = img
# Generate a unique URL for the image
image_id = f"{i}"
image_url = f"/v1/images/{task_id}/{image_id}"
# Store image data based on requested format
if request.response_format == "b64_json":
encoded = base64.b64encode(img_data).decode('utf-8')
IMAGE_STORAGE[task_id]["images"].append({
"image_id": image_id,
"data": encoded,
"url": image_url,
})
else: # Default to URL
IMAGE_STORAGE[task_id]["images"].append({
"image_id": image_id,
"data": img_data,
"url": image_url,
})
# Update task status
IMAGE_STORAGE[task_id]["status"] = "completed"
except Exception as e:
# Handle errors
IMAGE_STORAGE[task_id]["status"] = "failed"
IMAGE_STORAGE[task_id]["error"] = str(e)
# Start background task
background_tasks.add_task(generate_images)
# Immediate response with task details
# For compatibility, we need to structure this like OpenAI's response
created_timestamp = int(time.time())
# Wait briefly to allow the background task to start
await asyncio.sleep(0.1)
# Check if the task failed immediately
if IMAGE_STORAGE[task_id]["status"] == "failed":
error_message = IMAGE_STORAGE[task_id].get("error", "Unknown error")
raise APIError(message=f"Image generation failed: {error_message}", code=500)
# Prepare response data
image_data = []
for i in range(request.n):
if request.response_format == "b64_json":
image_data.append({
"b64_json": "", # Will be filled in by the background task
"revised_prompt": request.prompt
})
else:
image_data.append({
"url": f"/v1/images/{task_id}/{i}",
"revised_prompt": request.prompt
})
return {
"created": created_timestamp,
"data": image_data
}
except APIError as e:
return JSONResponse(
status_code=e.code,
content={"error": {"message": e.message, "type": e.type, "param": e.param, "code": e.code}}
)
except Exception as e:
return JSONResponse(
status_code=500,
content={"error": {"message": str(e), "type": "server_error", "param": None, "code": 500}}
)
# Image retrieval endpoint
@app.get("/v1/images/{task_id}/{image_id}", dependencies=[Depends(verify_api_key)])
async def get_image(task_id: str, image_id: str):
if task_id not in IMAGE_STORAGE:
return JSONResponse(
status_code=404,
content={"error": {"message": f"Image not found", "type": "not_found_error"}}
)
task_data = IMAGE_STORAGE[task_id]
if task_data["status"] == "failed":
return JSONResponse(
status_code=500,
content={"error": {"message": f"Image generation failed: {task_data.get('error', 'Unknown error')}", "type": "processing_error"}}
)
if task_data["status"] == "processing":
return JSONResponse(
status_code=202,
content={"status": "processing", "message": "Image is still being generated"}
)
# Find the requested image
for img in task_data["images"]:
if img["image_id"] == image_id:
# If it's stored as base64, it's already in the right format
if isinstance(img["data"], str):
return JSONResponse(content={"b64_json": img["data"]})
# If it's binary data, return as an image stream
return StreamingResponse(
io.BytesIO(img["data"]),
media_type="image/png"
)
return JSONResponse(
status_code=404,
content={"error": {"message": f"Image not found", "type": "not_found_error"}}
)
# Legacy endpoints for backward compatibility
@app.get("/providers")
async def list_providers_legacy():
providers = {}
for provider_name, provider_info in PROVIDER_MAP.items():
model_info = PROVIDER_MODEL_INFO.get(provider_name, {})
providers[provider_name] = {
"description": provider_info.get("description", ""),
"default_model": model_info.get("default", "default"),
"models": model_info.get("models", ["default"]),
"default_params": model_info.get("default_params", {})
}
return providers
# Main entry point
if __name__ == "__main__":
uvicorn.run(
"app:app",
host="0.0.0.0",
port=8000,
reload=True
) |