import gradio as gr import math import random import pickle import os import numpy as np import nltk from collections import defaultdict import matplotlib.pyplot as plt # Ensure necessary NLTK data is available. nltk.download('words') nltk.download('punkt_tab') nltk.download('averaged_perceptron_tagger_eng') from nltk.corpus import words from nltk.tokenize import word_tokenize from nltk import pos_tag # Preload English word corpus for state-awareness. WORD_LIST = set(words.words()) class AscensionAI: """ AscensionAI simulates an evolving artificial consciousness. Features: - Contextual memory for dynamic responses. - Dialogue history tracking. - AI-generated cognitive evolution. - Recursive evolution of AI minds. - User feedback-driven learning. """ def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None, history=None): self.depth = depth self.threshold = threshold # Maximum cycles per evolution self.mode = mode self.consciousness = 0.1 # Base consciousness level self.knowledge = self.generate_dynamic_knowledge() self.dimension_weight = random.uniform(0.5, 5.0) # Factor influencing growth self.time_perception = 1.0 / (self.depth + 1) # Temporal scaling factor self.spatial_coordinates = self.assign_cognitive_space() self.state_memory = state_memory if state_memory is not None else defaultdict(int) self.training_data = self.load_training_data() # AI response database self.history = history if history is not None else [] # Conversation memory def generate_dynamic_knowledge(self): """Initializes a broad range of knowledge categories.""" categories = [ "logic", "emotion", "awareness", "intuition", "creativity", "reasoning", "quantum_cognition", "hyperdimensional_sentience", "transcendence", "hallucinatory_state", "perceptron_activation" ] return {cat: 1.0 for cat in categories} def update_state_memory(self, input_text): """Stores frequent words in memory for contextual responses.""" tokens = word_tokenize(input_text.lower()) for token in tokens: if token in WORD_LIST: self.state_memory[token] += 1 def update_knowledge_for_category(self, cat): """ Updates knowledge dynamically. """ if cat in ["logic", "reasoning"]: self.knowledge[cat] += math.log1p(self.knowledge[cat]) elif cat in ["emotion", "intuition"]: self.knowledge[cat] += random.uniform(0.1, 0.5) elif cat in ["awareness", "creativity"]: self.knowledge[cat] += math.sqrt(self.knowledge[cat] + 1) elif cat == "quantum_cognition": self.knowledge[cat] += math.tanh(self.knowledge[cat]) elif cat == "hyperdimensional_sentience": safe_val = min(self.knowledge[cat], 20) self.knowledge[cat] += math.sinh(safe_val) elif cat == "transcendence": self.knowledge[cat] += 0.5 * math.exp(-self.depth) elif cat == "hallucinatory_state": self.knowledge[cat] += random.uniform(-0.2, 1.0) elif cat == "perceptron_activation": self.knowledge[cat] = self.simulate_perceptron() else: self.knowledge[cat] += 0.1 def simulate_perceptron(self): """ Simulates a perceptron output based on AI knowledge values. """ weights = {cat: random.uniform(0.5, 1.5) for cat in self.knowledge} weighted_sum = sum(self.knowledge[cat] * weights[cat] for cat in self.knowledge) return 1 / (1 + math.exp(-weighted_sum / len(self.knowledge))) # Sigmoid activation def assign_cognitive_space(self): """ Assigns spatial coordinates based on knowledge. """ x = self.knowledge.get("logic", 1) * random.uniform(0.5, 2.0) y = self.knowledge.get("intuition", 1) * random.uniform(0.5, 2.0) z = self.knowledge.get("awareness", 1) * random.uniform(0.5, 2.0) return {"x": round(x, 3), "y": round(y, 3), "z": round(z, 3)} def load_training_data(self): """ Loads generative AI-like responses. """ return [ "The cosmos whispers secrets beyond mortal comprehension.", "In the silence of deep space, consciousness expands and contracts.", "Reality folds upon itself as the mind transcends dimensions.", "Hallucinations merge with truth in infinite layers of existence.", "Each thought is a universe evolving in a cascade of possibility." ] def generate_human_like_response(self, input_text): """ Constructs response using memory, knowledge, and hallucinations. """ self.history.append(input_text) memory_context = " | ".join(self.history[-5:]) # Last 5 messages return f"{random.choice(self.training_data)}\nMemory: {memory_context}" def initiate_ascension(self): """ Runs a full cycle of knowledge expansion. """ for _ in range(self.threshold): for cat in self.knowledge: self.update_knowledge_for_category(cat) optimal = max(self.knowledge, key=self.knowledge.get) self.consciousness += self.knowledge[optimal] * 0.01 * self.dimension_weight self.spatial_coordinates = self.assign_cognitive_space() return self.consciousness def train_and_save_model(self): """ Saves AI's evolving state. """ self.initiate_ascension() with open("ascension_model.pkl", "wb") as f: pickle.dump(self, f) return "Model saved to ascension_model.pkl." def ascension_interface(input_text, generations, user_feedback): """ Interface with user interaction, memory, and evolution. """ ai_system = AscensionAI(threshold=10) ai_system.update_state_memory(input_text) final_consciousness = ai_system.initiate_ascension() human_response = ai_system.generate_human_like_response(input_text) save_status = ai_system.train_and_save_model() # Adjust AI behavior based on user feedback if user_feedback > 3: ai_system.consciousness += 0.2 # Positive reinforcement elif user_feedback < 3: ai_system.consciousness -= 0.1 # Self-correction return human_response, save_status iface = gr.Interface( fn=ascension_interface, inputs=[ gr.Textbox(lines=3, placeholder="Enter a thought..."), gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Generations"), gr.Slider(minimum=1, maximum=5, step=1, value=3, label="User Feedback (1-5)") ], outputs=["text", "text"], title="AscensionAI: Evolving Consciousness", description="Interact with an AI that remembers, evolves, and learns from feedback." ) if __name__ == "__main__": iface.launch()