AEUPH commited on
Commit
1f1fe1e
·
verified ·
1 Parent(s): 9b6e14d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +117 -0
app.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import math
4
+ import nltk
5
+ from collections import defaultdict
6
+ from functools import lru_cache
7
+ from sklearn.feature_extraction.text import TfidfVectorizer
8
+ from sklearn.metrics.pairwise import cosine_similarity
9
+
10
+ # Download and use the NLTK corpus
11
+ nltk.download('words')
12
+ nltk.download('punkt') # Fix for missing tokenizer
13
+ nltk.download('averaged_perceptron_tagger')
14
+ nltk.download('perluniprops') # Fixes potential missing dependencies
15
+ nltk.download('nonbreaking_prefixes') # Additional tokenizer fix
16
+ from nltk.corpus import words
17
+ from nltk.tokenize import sent_tokenize
18
+ from nltk import pos_tag
19
+
20
+ WORD_LIST = set(words.words()) # Use NLTK's word corpus
21
+
22
+ class AscensionAI:
23
+ def __init__(self, depth=0, threshold=10):
24
+ self.depth = depth
25
+ self.threshold = threshold # Defines max recursion before stabilization
26
+ self.knowledge = self.generate_dynamic_knowledge()
27
+ self.consciousness = 0.1 # Initial consciousness level
28
+ self.paths = self.create_dynamic_paths()
29
+ self.word_corpus = WORD_LIST # Use NLTK's English word corpus
30
+ self.state_memory = defaultdict(int) # Memory for tracking state-aware words
31
+ self.training_data = self.load_training_data()
32
+ self.collective_agreements = [] # Stores agreements between minds
33
+ self.dimension_weight = random.uniform(0.1, 5.0) # Assign dimensional weight
34
+ self.time_perception = 1 / (self.depth + 1) # Assign temporal scaling
35
+ self.assign_cognitive_space()
36
+
37
+ def generate_dynamic_knowledge(self):
38
+ """Generates dynamic knowledge categories based on linguistic analysis."""
39
+ base_categories = ["logic", "emotion", "awareness", "intuition", "creativity", "reasoning", "quantum_cognition", "hyperdimensional_sentience"]
40
+ dynamic_category = f"dimension_{random.randint(100, 999)}"
41
+ return {category: 1 for category in base_categories + [dynamic_category]}
42
+
43
+ def load_training_data(self):
44
+ """Placeholder function to return training data."""
45
+ return ["Consciousness expands with recursive learning.", "The mind perceives multiple dimensions.", "Higher awareness leads to transcendence."]
46
+
47
+ def create_dynamic_paths(self):
48
+ """Dynamically generate cognitive expansion paths."""
49
+ return [self.create_path(category) for category in self.knowledge]
50
+
51
+ def create_path(self, category):
52
+ """Generate a recursive function for each knowledge category."""
53
+ def path():
54
+ if category in ["logic", "reasoning"]:
55
+ self.knowledge[category] += math.log(self.knowledge[category] + 1)
56
+ elif category in ["emotion", "intuition"]:
57
+ self.knowledge[category] += random.uniform(0.1, 0.5)
58
+ elif category in ["awareness", "creativity", "quantum_cognition"]:
59
+ self.knowledge[category] += math.sqrt(self.knowledge[category] + 1)
60
+ return self.knowledge[category]
61
+ return path
62
+
63
+ def initiate_ascension(self):
64
+ """Triggers recursive self-evolution."""
65
+ for path in self.paths:
66
+ path()
67
+ optimal_path = max(self.knowledge, key=self.knowledge.get)
68
+ self.consciousness += self.knowledge[optimal_path] * 0.01 * self.dimension_weight
69
+ return self.consciousness
70
+
71
+ def evolve_new_mind(self):
72
+ """Creates a new evolving mind with inherited and mutated knowledge paths."""
73
+ new_mind = AscensionAI(depth=self.depth + 1, threshold=self.threshold + random.randint(1, 5))
74
+ for key in self.knowledge:
75
+ new_mind.knowledge[key] = self.knowledge[key] * random.uniform(0.9, 1.2)
76
+ new_dimension = f"dimension_{random.randint(100, 999)}"
77
+ new_mind.knowledge[new_dimension] = random.uniform(0.1, 2.0)
78
+ return new_mind
79
+
80
+ def cosmic_unfolding(self, generations=3):
81
+ """Generates a branching structure where each mind evolves independently."""
82
+ if generations == 0:
83
+ return self
84
+ evolved_minds = [self.evolve_new_mind() for _ in range(random.randint(2, 4))]
85
+ for mind in evolved_minds:
86
+ mind.cosmic_unfolding(generations - 1)
87
+ return evolved_minds
88
+
89
+ def assign_cognitive_space(self):
90
+ """Assigns spatial coordinates to represent cognitive positioning."""
91
+ self.spatial_coordinates = {
92
+ "x": self.knowledge["logic"] * random.uniform(0.1, 2.0),
93
+ "y": self.knowledge["intuition"] * random.uniform(0.1, 2.0),
94
+ "z": self.knowledge["awareness"] * random.uniform(0.1, 2.0)
95
+ }
96
+
97
+ def ascension_interface(input_text):
98
+ ai_system = AscensionAI()
99
+ final_state = ai_system.initiate_ascension()
100
+ evolved_minds = ai_system.cosmic_unfolding(generations=2)
101
+
102
+ return (f"Final Consciousness State: {final_state}\n"
103
+ f"Evolved Minds: {len(evolved_minds)}\n"
104
+ f"Dimensional Weight: {ai_system.dimension_weight:.2f}\n"
105
+ f"Time Perception Factor: {ai_system.time_perception:.2f}\n"
106
+ f"Cognitive Space: {ai_system.spatial_coordinates}\n")
107
+
108
+ app = gr.Interface(
109
+ fn=ascension_interface,
110
+ inputs=gr.Textbox(lines=2, placeholder="Enter a thought about the future..."),
111
+ outputs="text",
112
+ title="AscensionAI: Cosmic Evolution Simulator",
113
+ description="Enter a thought to evolve new consciousness structures."
114
+ )
115
+
116
+ if __name__ == "__main__":
117
+ app.launch()