Spaces:
Running
Running
Sean-Case
commited on
Commit
·
114048b
1
Parent(s):
9795699
gpu_layers should now update correctly. Added code for creating distribution.
Browse files- .gitignore +3 -1
- app.py +23 -9
- bootstrapper.py +63 -0
- chatfuncs/chatfuncs.py +26 -30
- requirements.txt +0 -1
.gitignore
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
*.pyc
|
| 2 |
*.ipynb
|
| 3 |
-
*.pdf
|
|
|
|
|
|
|
|
|
| 1 |
*.pyc
|
| 2 |
*.ipynb
|
| 3 |
+
*.pdf
|
| 4 |
+
*/build
|
| 5 |
+
*/dist
|
app.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
|
| 3 |
# +
|
| 4 |
import os
|
|
|
|
| 5 |
|
| 6 |
# Need to overwrite version of gradio present in Huggingface spaces as it doesn't have like buttons/avatars (Oct 2023)
|
| 7 |
#os.system("pip uninstall -y gradio")
|
|
@@ -69,18 +70,31 @@ import chatfuncs.chatfuncs as chatf
|
|
| 69 |
chatf.embeddings = load_embeddings(embeddings_name)
|
| 70 |
chatf.vectorstore = get_faiss_store(faiss_vstore_folder="faiss_embedding",embeddings=globals()["embeddings"])
|
| 71 |
|
|
|
|
|
|
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
def load_model(model_type, gpu_layers, CtransInitConfig_gpu=chatf.CtransInitConfig_gpu, CtransInitConfig_cpu=chatf.CtransInitConfig_cpu, torch_device=chatf.torch_device):
|
| 75 |
-
print("Loading model")
|
| 76 |
if model_type == "Orca Mini":
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
try:
|
| 81 |
-
model = AutoModelForCausalLM.from_pretrained('juanjgit/orca_mini_3B-GGUF', model_type='llama', model_file='orca-mini-3b.q4_0.gguf', **asdict(
|
| 82 |
except:
|
| 83 |
-
model = AutoModelForCausalLM.from_pretrained('juanjgit/orca_mini_3B-GGUF', model_type='llama', model_file='orca-mini-3b.q4_0.gguf', **asdict(
|
| 84 |
|
| 85 |
tokenizer = []
|
| 86 |
|
|
@@ -119,10 +133,10 @@ def load_model(model_type, gpu_layers, CtransInitConfig_gpu=chatf.CtransInitConf
|
|
| 119 |
# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
|
| 120 |
model_type = "Orca Mini"
|
| 121 |
|
| 122 |
-
load_model(model_type, chatf.gpu_layers, chatf.
|
| 123 |
|
| 124 |
model_type = "Flan Alpaca"
|
| 125 |
-
load_model(model_type, 0, chatf.
|
| 126 |
|
| 127 |
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
|
| 128 |
|
|
@@ -207,7 +221,7 @@ with block:
|
|
| 207 |
|
| 208 |
with gr.Tab("Advanced features"):
|
| 209 |
model_choice = gr.Radio(label="Choose a chat model", value="Flan Alpaca", choices = ["Flan Alpaca", "Orca Mini"])
|
| 210 |
-
gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU (please don't change if you don't know what you're doing).", value=0, minimum=0, maximum=6, step = 1)
|
| 211 |
|
| 212 |
gr.HTML(
|
| 213 |
"<center>This app is based on the models Flan Alpaca and Orca Mini. It powered by Gradio, Transformers, Ctransformers, and Langchain.</a></center>"
|
|
|
|
| 2 |
|
| 3 |
# +
|
| 4 |
import os
|
| 5 |
+
import copy
|
| 6 |
|
| 7 |
# Need to overwrite version of gradio present in Huggingface spaces as it doesn't have like buttons/avatars (Oct 2023)
|
| 8 |
#os.system("pip uninstall -y gradio")
|
|
|
|
| 70 |
chatf.embeddings = load_embeddings(embeddings_name)
|
| 71 |
chatf.vectorstore = get_faiss_store(faiss_vstore_folder="faiss_embedding",embeddings=globals()["embeddings"])
|
| 72 |
|
| 73 |
+
def load_model(model_type, gpu_layers, gpu_config=None, cpu_config=None, torch_device=None):
|
| 74 |
+
print("Loading model")
|
| 75 |
|
| 76 |
+
# Default values inside the function
|
| 77 |
+
if gpu_config is None:
|
| 78 |
+
gpu_config = chatf.gpu_config
|
| 79 |
+
if cpu_config is None:
|
| 80 |
+
cpu_config = chatf.cpu_config
|
| 81 |
+
if torch_device is None:
|
| 82 |
+
torch_device = chatf.torch_device
|
| 83 |
|
|
|
|
|
|
|
| 84 |
if model_type == "Orca Mini":
|
| 85 |
+
|
| 86 |
+
gpu_config.update_gpu(gpu_layers)
|
| 87 |
+
cpu_config.update_gpu(gpu_layers)
|
| 88 |
+
|
| 89 |
+
print("Loading with", cpu_config.gpu_layers, "model layers sent to GPU.")
|
| 90 |
+
|
| 91 |
+
print(vars(gpu_config))
|
| 92 |
+
print(vars(cpu_config))
|
| 93 |
|
| 94 |
try:
|
| 95 |
+
model = AutoModelForCausalLM.from_pretrained('juanjgit/orca_mini_3B-GGUF', model_type='llama', model_file='orca-mini-3b.q4_0.gguf', **vars(cpu_config)) # **asdict(CtransRunConfig_cpu())
|
| 96 |
except:
|
| 97 |
+
model = AutoModelForCausalLM.from_pretrained('juanjgit/orca_mini_3B-GGUF', model_type='llama', model_file='orca-mini-3b.q4_0.gguf', **vars(gpu_config)) #**asdict(CtransRunConfig_gpu())
|
| 98 |
|
| 99 |
tokenizer = []
|
| 100 |
|
|
|
|
| 133 |
# Both models are loaded on app initialisation so that users don't have to wait for the models to be downloaded
|
| 134 |
model_type = "Orca Mini"
|
| 135 |
|
| 136 |
+
load_model(model_type, chatf.gpu_layers, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
|
| 137 |
|
| 138 |
model_type = "Flan Alpaca"
|
| 139 |
+
load_model(model_type, 0, chatf.gpu_config, chatf.cpu_config, chatf.torch_device)
|
| 140 |
|
| 141 |
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings):
|
| 142 |
|
|
|
|
| 221 |
|
| 222 |
with gr.Tab("Advanced features"):
|
| 223 |
model_choice = gr.Radio(label="Choose a chat model", value="Flan Alpaca", choices = ["Flan Alpaca", "Orca Mini"])
|
| 224 |
+
gpu_layer_choice = gr.Slider(label="Choose number of model layers to send to GPU (please don't change if you don't know what you're doing).", value=0, minimum=0, maximum=6, step = 1, scale = 0)
|
| 225 |
|
| 226 |
gr.HTML(
|
| 227 |
"<center>This app is based on the models Flan Alpaca and Orca Mini. It powered by Gradio, Transformers, Ctransformers, and Langchain.</a></center>"
|
bootstrapper.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
import os
|
| 3 |
+
import subprocess
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
# Set up logging
|
| 7 |
+
logging.basicConfig(filename='bootstrapper.log', level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 8 |
+
|
| 9 |
+
ENV_DIR = "app_env"
|
| 10 |
+
|
| 11 |
+
def create_virtual_env():
|
| 12 |
+
logging.info("Checking for virtual environment at {}".format(ENV_DIR))
|
| 13 |
+
|
| 14 |
+
if not os.path.exists(ENV_DIR):
|
| 15 |
+
logging.info("Virtual environment not found. Creating a new one.")
|
| 16 |
+
|
| 17 |
+
# Import virtualenv and create a new environment
|
| 18 |
+
import virtualenv
|
| 19 |
+
virtualenv.create_environment(ENV_DIR)
|
| 20 |
+
|
| 21 |
+
def install_dependencies():
|
| 22 |
+
logging.info("Installing dependencies.")
|
| 23 |
+
|
| 24 |
+
# Ensure the requirements.txt file is bundled with your application
|
| 25 |
+
requirements_path = "requirements.txt"
|
| 26 |
+
|
| 27 |
+
# pip executable within the virtual environment
|
| 28 |
+
pip_path = os.path.join(ENV_DIR, 'Scripts', 'pip')
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
subprocess.check_call([pip_path, "install", "-r", requirements_path])
|
| 32 |
+
logging.info("Dependencies installed successfully.")
|
| 33 |
+
except Exception as e:
|
| 34 |
+
logging.error("Error installing dependencies: {}".format(e))
|
| 35 |
+
|
| 36 |
+
def main():
|
| 37 |
+
#try:
|
| 38 |
+
# create_virtual_env()
|
| 39 |
+
#except Exception as e:
|
| 40 |
+
# logging.error("An error occurred in the bootstrapper: {}".format(e), exc_info=True)
|
| 41 |
+
|
| 42 |
+
try:
|
| 43 |
+
import langchain
|
| 44 |
+
except ImportError:
|
| 45 |
+
logging.warning("Some dependencies are missing. Attempting to install.")
|
| 46 |
+
install_dependencies()
|
| 47 |
+
|
| 48 |
+
# Now you can run your main application logic.
|
| 49 |
+
# If it's in another file, you can use exec as shown before.
|
| 50 |
+
try:
|
| 51 |
+
with open('app.py', 'r') as file:
|
| 52 |
+
exec(file.read())
|
| 53 |
+
logging.info("Main application executed successfully.")
|
| 54 |
+
except Exception as e:
|
| 55 |
+
logging.error("Error executing main application: {}".format(e))
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
logging.info("Bootstrapper started.")
|
| 59 |
+
try:
|
| 60 |
+
main()
|
| 61 |
+
logging.info("Bootstrapper finished.")
|
| 62 |
+
except Exception as e:
|
| 63 |
+
logging.error("An error occurred in the bootstrapper: {}".format(e))
|
chatfuncs/chatfuncs.py
CHANGED
|
@@ -95,38 +95,34 @@ context_length:int = 4096
|
|
| 95 |
sample = True
|
| 96 |
|
| 97 |
|
| 98 |
-
@dataclass
|
| 99 |
class CtransInitConfig_gpu:
|
| 100 |
-
temperature
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
class CtransInitConfig_cpu:
|
| 116 |
-
temperature: float = temperature
|
| 117 |
-
top_k: int = top_k
|
| 118 |
-
top_p: float = top_p
|
| 119 |
-
repetition_penalty: float = repetition_penalty
|
| 120 |
-
last_n_tokens: int = last_n_tokens
|
| 121 |
-
max_new_tokens: int = max_new_tokens
|
| 122 |
-
seed: int = seed
|
| 123 |
-
reset: bool = reset
|
| 124 |
-
stream: bool = stream
|
| 125 |
-
threads: int = threads
|
| 126 |
-
batch_size:int = batch_size
|
| 127 |
-
context_length:int = context_length
|
| 128 |
-
gpu_layers:int = 0
|
| 129 |
-
#stop: list[str] = field(default_factory=lambda: [stop_string])
|
| 130 |
|
| 131 |
@dataclass
|
| 132 |
class CtransGenGenerationConfig:
|
|
|
|
| 95 |
sample = True
|
| 96 |
|
| 97 |
|
|
|
|
| 98 |
class CtransInitConfig_gpu:
|
| 99 |
+
def __init__(self, temperature=0.1, top_k=3, top_p=1, repetition_penalty=1.05, last_n_tokens=64, max_new_tokens=125, seed=42, reset=False, stream=True, threads=None, batch_size=1024, context_length=4096, gpu_layers=None):
|
| 100 |
+
self.temperature = temperature
|
| 101 |
+
self.top_k = top_k
|
| 102 |
+
self.top_p = top_p
|
| 103 |
+
self.repetition_penalty = repetition_penalty
|
| 104 |
+
self.last_n_tokens = last_n_tokens
|
| 105 |
+
self.max_new_tokens = max_new_tokens
|
| 106 |
+
self.seed = seed
|
| 107 |
+
self.reset = reset
|
| 108 |
+
self.stream = stream
|
| 109 |
+
self.threads = threads
|
| 110 |
+
self.batch_size = batch_size
|
| 111 |
+
self.context_length = context_length
|
| 112 |
+
self.gpu_layers = gpu_layers
|
| 113 |
+
# self.stop: list[str] = field(default_factory=lambda: [stop_string])
|
| 114 |
+
|
| 115 |
+
def update_gpu(self, new_value):
|
| 116 |
+
self.gpu_layers = new_value
|
| 117 |
+
|
| 118 |
+
class CtransInitConfig_cpu(CtransInitConfig_gpu):
|
| 119 |
+
def __init__(self):
|
| 120 |
+
super().__init__()
|
| 121 |
+
self.gpu_layers = 0
|
| 122 |
+
|
| 123 |
+
gpu_config = CtransInitConfig_gpu()
|
| 124 |
+
cpu_config = CtransInitConfig_cpu()
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
@dataclass
|
| 128 |
class CtransGenGenerationConfig:
|
requirements.txt
CHANGED
|
@@ -6,7 +6,6 @@ transformers
|
|
| 6 |
torch
|
| 7 |
sentence_transformers
|
| 8 |
faiss-cpu
|
| 9 |
-
bitsandbytes
|
| 10 |
pypdf
|
| 11 |
python-docx
|
| 12 |
ctransformers[cuda]
|
|
|
|
| 6 |
torch
|
| 7 |
sentence_transformers
|
| 8 |
faiss-cpu
|
|
|
|
| 9 |
pypdf
|
| 10 |
python-docx
|
| 11 |
ctransformers[cuda]
|