import torch import torchmetrics import pytorch_lightning as pl from torch import Tensor, nn from einops import rearrange from torchaudio.models import HDemucs from audio_diffusion_pytorch import DiffusionModel from auraloss.time import SISDRLoss from auraloss.freq import MultiResolutionSTFTLoss from umx.openunmix.model import OpenUnmix, Separator from utils import FADLoss, spectrogram, log_wandb_audio_batch from dptnet import DPTNet_base from dcunet import RefineSpectrogramUnet class RemFX(pl.LightningModule): def __init__( self, lr: float, lr_beta1: float, lr_beta2: float, lr_eps: float, lr_weight_decay: float, sample_rate: float, network: nn.Module, ): super().__init__() self.lr = lr self.lr_beta1 = lr_beta1 self.lr_beta2 = lr_beta2 self.lr_eps = lr_eps self.lr_weight_decay = lr_weight_decay self.sample_rate = sample_rate self.model = network self.metrics = nn.ModuleDict( { "SISDR": SISDRLoss(), "STFT": MultiResolutionSTFTLoss(), "FAD": FADLoss(sample_rate=sample_rate), } ) # Log first batch metrics input vs output only once self.log_train_audio = True @property def device(self): return next(self.model.parameters()).device def configure_optimizers(self): optimizer = torch.optim.AdamW( list(self.model.parameters()), lr=self.lr, betas=(self.lr_beta1, self.lr_beta2), eps=self.lr_eps, weight_decay=self.lr_weight_decay, ) return optimizer # Add step-based learning rate scheduler def optimizer_step( self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu, using_lbfgs, ): # update params optimizer.step(closure=optimizer_closure) # update learning rate. Reduce by factor of 10 at 80% and 95% of training if self.trainer.global_step == 0.8 * self.trainer.max_steps: for pg in optimizer.param_groups: pg["lr"] = 0.1 * pg["lr"] if self.trainer.global_step == 0.95 * self.trainer.max_steps: for pg in optimizer.param_groups: pg["lr"] = 0.1 * pg["lr"] def training_step(self, batch, batch_idx): loss = self.common_step(batch, batch_idx, mode="train") return loss def validation_step(self, batch, batch_idx): loss = self.common_step(batch, batch_idx, mode="valid") return loss def test_step(self, batch, batch_idx): loss = self.common_step(batch, batch_idx, mode="test") return loss def common_step(self, batch, batch_idx, mode: str = "train"): x, y, _, _ = batch # x, y = (B, C, T), (B, C, T) loss, output = self.model((x, y)) self.log(f"{mode}_loss", loss) # Metric logging with torch.no_grad(): for metric in self.metrics: # SISDR returns negative values, so negate them if metric == "SISDR": negate = -1 else: negate = 1 # Only Log FAD on test set if metric == "FAD" and mode != "test": continue self.log( f"{mode}_{metric}", negate * self.metrics[metric](output, y), on_step=False, on_epoch=True, logger=True, prog_bar=True, sync_dist=True, ) return loss def on_train_batch_start(self, batch, batch_idx): # Log initial audio if self.log_train_audio: x, y, _, _ = batch # Concat samples together for easier viewing in dashboard input_samples = rearrange(x, "b c t -> c (b t)").unsqueeze(0) target_samples = rearrange(y, "b c t -> c (b t)").unsqueeze(0) log_wandb_audio_batch( logger=self.logger, id="input_effected_audio", samples=input_samples.cpu(), sampling_rate=self.sample_rate, caption="Training Data", ) log_wandb_audio_batch( logger=self.logger, id="target_audio", samples=target_samples.cpu(), sampling_rate=self.sample_rate, caption="Target Data", ) self.log_train_audio = False def on_validation_batch_start(self, batch, batch_idx, dataloader_idx): x, target, _, _ = batch # Log Input Metrics for metric in self.metrics: # SISDR returns negative values, so negate them if metric == "SISDR": negate = -1 else: negate = 1 # Only Log FAD on test set if metric == "FAD": continue self.log( f"Input_{metric}", negate * self.metrics[metric](x, target), on_step=False, on_epoch=True, logger=True, prog_bar=True, sync_dist=True, ) # Only run on first batch if batch_idx == 0: self.model.eval() with torch.no_grad(): y = self.model.sample(x) # Concat samples together for easier viewing in dashboard # 2 seconds of silence between each sample silence = torch.zeros_like(x) silence = silence[:, : self.sample_rate * 2] concat_samples = torch.cat([y, silence, x, silence, target], dim=-1) log_wandb_audio_batch( logger=self.logger, id="prediction_input_target", samples=concat_samples.cpu(), sampling_rate=self.sample_rate, caption=f"Epoch {self.current_epoch}", ) self.model.train() def on_test_batch_start(self, batch, batch_idx, dataloader_idx): self.on_validation_batch_start(batch, batch_idx, dataloader_idx) # Log FAD x, target, _, _ = batch self.log( "Input_FAD", self.metrics["FAD"](x, target), on_step=False, on_epoch=True, logger=True, prog_bar=True, sync_dist=True, ) class OpenUnmixModel(nn.Module): def __init__( self, n_fft: int = 2048, hop_length: int = 512, n_channels: int = 1, alpha: float = 0.3, sample_rate: int = 22050, ): super().__init__() self.n_channels = n_channels self.n_fft = n_fft self.hop_length = hop_length self.alpha = alpha window = torch.hann_window(n_fft) self.register_buffer("window", window) self.num_bins = self.n_fft // 2 + 1 self.sample_rate = sample_rate self.model = OpenUnmix( nb_channels=self.n_channels, nb_bins=self.num_bins, ) self.separator = Separator( target_models={"other": self.model}, nb_channels=self.n_channels, sample_rate=self.sample_rate, n_fft=self.n_fft, n_hop=self.hop_length, ) self.mrstftloss = MultiResolutionSTFTLoss( n_bins=self.num_bins, sample_rate=self.sample_rate ) self.l1loss = nn.L1Loss() def forward(self, batch): x, target = batch X = spectrogram(x, self.window, self.n_fft, self.hop_length, self.alpha) Y = self.model(X) sep_out = self.separator(x).squeeze(1) loss = self.mrstftloss(sep_out, target) + self.l1loss(sep_out, target) * 100 return loss, sep_out def sample(self, x: Tensor) -> Tensor: return self.separator(x).squeeze(1) class DemucsModel(nn.Module): def __init__(self, sample_rate, **kwargs) -> None: super().__init__() self.model = HDemucs(**kwargs) self.num_bins = kwargs["nfft"] // 2 + 1 self.mrstftloss = MultiResolutionSTFTLoss( n_bins=self.num_bins, sample_rate=sample_rate ) self.l1loss = nn.L1Loss() def forward(self, batch): x, target = batch output = self.model(x).squeeze(1) loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100 return loss, output def sample(self, x: Tensor) -> Tensor: return self.model(x).squeeze(1) class DiffusionGenerationModel(nn.Module): def __init__(self, n_channels: int = 1): super().__init__() self.model = DiffusionModel(in_channels=n_channels) def forward(self, batch): x, target = batch sampled_out = self.model.sample(x) return self.model(x), sampled_out def sample(self, x: Tensor, num_steps: int = 10) -> Tensor: noise = torch.randn(x.shape).to(x) return self.model.sample(noise, num_steps=num_steps) class DPTNetModel(nn.Module): def __init__(self, sample_rate, **kwargs): super().__init__() self.model = DPTNet_base(**kwargs) self.mrstftloss = MultiResolutionSTFTLoss( n_bins=self.num_bins, sample_rate=sample_rate ) self.l1loss = nn.L1Loss() def forward(self, batch): x, target = batch output = self.model(x).squeeze(1) loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100 return loss, output def sample(self, x: Tensor) -> Tensor: return self.model.sample(x) class DCUNetModel(nn.Module): def __init__(self, sample_rate, **kwargs): super().__init__() self.model = RefineSpectrogramUnet(**kwargs) self.mrstftloss = MultiResolutionSTFTLoss( n_bins=self.num_bins, sample_rate=sample_rate ) self.l1loss = nn.L1Loss() def forward(self, batch): x, target = batch output = self.model(x).squeeze(1) loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100 return loss, output def sample(self, x: Tensor) -> Tensor: return self.model.sample(x) class FXClassifier(pl.LightningModule): def __init__( self, lr: float, lr_weight_decay: float, sample_rate: float, network: nn.Module, ): super().__init__() self.lr = lr self.lr_weight_decay = lr_weight_decay self.sample_rate = sample_rate self.network = network def forward(self, x: torch.Tensor): return self.network(x) def common_step(self, batch, batch_idx, mode: str = "train"): x, y, dry_label, wet_label = batch pred_label = self.network(x) loss = nn.functional.cross_entropy(pred_label, dry_label) self.log( f"{mode}_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, ) self.log( f"{mode}_mAP", torchmetrics.functional.retrieval_average_precision( pred_label, dry_label.long() ), on_step=True, on_epoch=True, prog_bar=True, logger=True, sync_dist=True, ) return loss def training_step(self, batch, batch_idx): return self.common_step(batch, batch_idx, mode="train") def validation_step(self, batch, batch_idx): return self.common_step(batch, batch_idx, mode="valid") def test_step(self, batch, batch_idx): return self.common_step(batch, batch_idx, mode="test") def configure_optimizers(self): optimizer = torch.optim.AdamW( self.network.parameters(), lr=self.lr, weight_decay=self.lr_weight_decay, ) return optimizer