RemFx / cfg /config.yaml
mattricesound's picture
Add gradient clipping and lr scheduler
d8d3e30
raw
history blame
2.32 kB
defaults:
- _self_
- model: null
- effects: null
seed: 12345
train: True
sample_rate: 48000
chunk_size: 262144 # 5.5s
logs_dir: "./logs"
render_files: True
render_root: "./data/processed"
callbacks:
model_checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
monitor: "valid_loss" # name of the logged metric which determines when model is improving
save_top_k: 1 # save k best models (determined by above metric)
save_last: True # additionaly always save model from last epoch
mode: "min" # can be "max" or "min"
verbose: False
dirpath: ${logs_dir}/ckpts/${now:%Y-%m-%d-%H-%M-%S}
filename: '{epoch:02d}-{valid_loss:.3f}'
learning_rate_monitor:
_target_: pytorch_lightning.callbacks.LearningRateMonitor
logging_interval: "step"
datamodule:
_target_: remfx.datasets.VocalSetDatamodule
train_dataset:
_target_: remfx.datasets.VocalSet
sample_rate: ${sample_rate}
root: ${oc.env:DATASET_ROOT}
chunk_size: ${chunk_size}
mode: "train"
effect_types: ${effects}
render_files: ${render_files}
render_root: ${render_root}
val_dataset:
_target_: remfx.datasets.VocalSet
sample_rate: ${sample_rate}
root: ${oc.env:DATASET_ROOT}
chunk_size: ${chunk_size}
mode: "val"
effect_types: ${effects}
render_files: ${render_files}
render_root: ${render_root}
test_dataset:
_target_: remfx.datasets.VocalSet
sample_rate: ${sample_rate}
root: ${oc.env:DATASET_ROOT}
chunk_size: ${chunk_size}
mode: "test"
effect_types: ${effects}
render_files: ${render_files}
render_root: ${render_root}
batch_size: 16
num_workers: 8
pin_memory: True
persistent_workers: True
logger:
_target_: pytorch_lightning.loggers.WandbLogger
project: ${oc.env:WANDB_PROJECT}
entity: ${oc.env:WANDB_ENTITY}
# offline: False # set True to store all logs only locally
job_type: "train"
group: ""
save_dir: "."
trainer:
_target_: pytorch_lightning.Trainer
precision: 32 # Precision used for tensors, default `32`
min_epochs: 0
max_epochs: -1
enable_model_summary: False
log_every_n_steps: 1 # Logs metrics every N batches
accumulate_grad_batches: 1
accelerator: null
devices: 1
gradient_clip_val: 10.0
max_steps: 50000