Spaces:
Sleeping
Sleeping
import torch | |
from torch.utils.data import Dataset | |
import torchaudio | |
import torchaudio.transforms as T | |
import torch.nn.functional as F | |
from pathlib import Path | |
from typing import List | |
# https://zenodo.org/record/7044411/ | |
LENGTH = 2**18 # 12 seconds | |
ORIG_SR = 48000 | |
class GuitarFXDataset(Dataset): | |
def __init__( | |
self, | |
root: str, | |
sample_rate: int, | |
length: int = LENGTH, | |
effect_type: List[str] = None, | |
): | |
self.length = length | |
self.wet_files = [] | |
self.dry_files = [] | |
self.labels = [] | |
self.root = Path(root) | |
if effect_type is None: | |
effect_type = [ | |
d.name for d in self.root.iterdir() if d.is_dir() and d != "Clean" | |
] | |
for i, effect in enumerate(effect_type): | |
for pickup in Path(self.root / effect).iterdir(): | |
self.wet_files += list(pickup.glob("*.wav")) | |
self.dry_files += list(self.root.glob(f"Clean/{pickup.name}/**/*.wav")) | |
self.labels += [i] * len(self.wet_files) | |
print( | |
f"Found {len(self.wet_files)} wet files and {len(self.dry_files)} dry files" | |
) | |
self.resampler = T.Resample(ORIG_SR, sample_rate) | |
def __len__(self): | |
return len(self.dry_files) | |
def __getitem__(self, idx): | |
x, sr = torchaudio.load(self.wet_files[idx]) | |
y, sr = torchaudio.load(self.dry_files[idx]) | |
effect_label = self.labels[idx] | |
resampled_x = self.resampler(x) | |
resampled_y = self.resampler(y) | |
# Pad or crop to length | |
if resampled_x.shape[-1] < self.length: | |
resampled_x = F.pad(resampled_x, (0, self.length - resampled_x.shape[1])) | |
elif resampled_x.shape[-1] > self.length: | |
resampled_x = resampled_x[:, : self.length] | |
if resampled_y.shape[-1] < self.length: | |
resampled_y = F.pad(resampled_y, (0, self.length - resampled_y.shape[1])) | |
elif resampled_y.shape[-1] > self.length: | |
resampled_y = resampled_y[:, : self.length] | |
return (resampled_x, resampled_y, effect_label) | |