Spaces:
Sleeping
Sleeping
import torch | |
from torch import Tensor, nn | |
import pytorch_lightning as pl | |
from einops import rearrange | |
import wandb | |
from audio_diffusion_pytorch import DiffusionModel | |
from auraloss.time import SISDRLoss | |
from auraloss.freq import MultiResolutionSTFTLoss, STFTLoss | |
from torch.nn import L1Loss | |
from frechet_audio_distance import FrechetAudioDistance | |
import numpy as np | |
from umx.openunmix.model import OpenUnmix, Separator | |
from torchaudio.models import HDemucs | |
class FADLoss(torch.nn.Module): | |
def __init__(self, sample_rate: float): | |
super().__init__() | |
self.fad = FrechetAudioDistance( | |
use_pca=False, use_activation=False, verbose=False | |
) | |
self.fad.model = self.fad.model.to("cpu") | |
self.sr = sample_rate | |
def forward(self, audio_background, audio_eval): | |
embds_background = [] | |
embds_eval = [] | |
for sample in audio_background: | |
embd = self.fad.model.forward(sample.T.cpu().detach().numpy(), self.sr) | |
embds_background.append(embd.cpu().detach().numpy()) | |
for sample in audio_eval: | |
embd = self.fad.model.forward(sample.T.cpu().detach().numpy(), self.sr) | |
embds_eval.append(embd.cpu().detach().numpy()) | |
embds_background = np.concatenate(embds_background, axis=0) | |
embds_eval = np.concatenate(embds_eval, axis=0) | |
mu_background, sigma_background = self.fad.calculate_embd_statistics( | |
embds_background | |
) | |
mu_eval, sigma_eval = self.fad.calculate_embd_statistics(embds_eval) | |
fad_score = self.fad.calculate_frechet_distance( | |
mu_background, sigma_background, mu_eval, sigma_eval | |
) | |
return fad_score | |
class RemFXModel(pl.LightningModule): | |
def __init__( | |
self, | |
lr: float, | |
lr_beta1: float, | |
lr_beta2: float, | |
lr_eps: float, | |
lr_weight_decay: float, | |
sample_rate: float, | |
network: nn.Module, | |
): | |
super().__init__() | |
self.lr = lr | |
self.lr_beta1 = lr_beta1 | |
self.lr_beta2 = lr_beta2 | |
self.lr_eps = lr_eps | |
self.lr_weight_decay = lr_weight_decay | |
self.sample_rate = sample_rate | |
self.model = network | |
self.metrics = torch.nn.ModuleDict( | |
{ | |
"SISDR": SISDRLoss(), | |
"STFT": STFTLoss(), | |
"FAD": FADLoss(sample_rate=sample_rate), | |
} | |
) | |
# Log first batch metrics input vs output only once | |
self.log_first_metrics = True | |
self.log_train_audio = True | |
def device(self): | |
return next(self.model.parameters()).device | |
def configure_optimizers(self): | |
optimizer = torch.optim.AdamW( | |
list(self.model.parameters()), | |
lr=self.lr, | |
betas=(self.lr_beta1, self.lr_beta2), | |
eps=self.lr_eps, | |
weight_decay=self.lr_weight_decay, | |
) | |
return optimizer | |
def training_step(self, batch, batch_idx): | |
loss = self.common_step(batch, batch_idx, mode="train") | |
return loss | |
def validation_step(self, batch, batch_idx): | |
loss = self.common_step(batch, batch_idx, mode="valid") | |
return loss | |
def common_step(self, batch, batch_idx, mode: str = "train"): | |
loss, output = self.model(batch) | |
self.log(f"{mode}_loss", loss) | |
x, y, label = batch | |
# Metric logging | |
for metric in self.metrics: | |
# SISDR returns negative values, so negate them | |
if metric == "SISDR": | |
negate = -1 | |
else: | |
negate = 1 | |
self.log( | |
f"{mode}_{metric}", | |
negate * self.metrics[metric](output, y), | |
on_step=False, | |
on_epoch=True, | |
logger=True, | |
prog_bar=True, | |
sync_dist=True, | |
) | |
return loss | |
def on_train_batch_start(self, batch, batch_idx): | |
if self.log_train_audio: | |
x, y, label = batch | |
# Concat samples together for easier viewing in dashboard | |
input_samples = rearrange(x, "b c t -> c (b t)").unsqueeze(0) | |
target_samples = rearrange(y, "b c t -> c (b t)").unsqueeze(0) | |
log_wandb_audio_batch( | |
logger=self.logger, | |
id="input_effected_audio", | |
samples=input_samples.cpu(), | |
sampling_rate=self.sample_rate, | |
caption="Training Data", | |
) | |
log_wandb_audio_batch( | |
logger=self.logger, | |
id="target_audio", | |
samples=target_samples.cpu(), | |
sampling_rate=self.sample_rate, | |
caption="Target Data", | |
) | |
self.log_train_audio = False | |
def on_validation_epoch_start(self): | |
self.log_next = True | |
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx): | |
if self.log_next: | |
x, target, label = batch | |
# Log Input Metrics | |
for metric in self.metrics: | |
# SISDR returns negative values, so negate them | |
if metric == "SISDR": | |
negate = -1 | |
else: | |
negate = 1 | |
self.log( | |
f"Input_{metric}", | |
negate * self.metrics[metric](x, target), | |
on_step=False, | |
on_epoch=True, | |
logger=True, | |
prog_bar=True, | |
sync_dist=True, | |
) | |
self.model.eval() | |
with torch.no_grad(): | |
y = self.model.sample(x) | |
# Concat samples together for easier viewing in dashboard | |
# 2 seconds of silence between each sample | |
silence = torch.zeros_like(x) | |
silence = silence[:, : self.sample_rate * 2] | |
concat_samples = torch.cat([y, silence, x, silence, target], dim=-1) | |
log_wandb_audio_batch( | |
logger=self.logger, | |
id="prediction_input_target", | |
samples=concat_samples.cpu(), | |
sampling_rate=self.sample_rate, | |
caption=f"Epoch {self.current_epoch}", | |
) | |
self.log_next = False | |
self.model.train() | |
class OpenUnmixModel(torch.nn.Module): | |
def __init__( | |
self, | |
n_fft: int = 2048, | |
hop_length: int = 512, | |
n_channels: int = 1, | |
alpha: float = 0.3, | |
sample_rate: int = 22050, | |
): | |
super().__init__() | |
self.n_channels = n_channels | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.alpha = alpha | |
window = torch.hann_window(n_fft) | |
self.register_buffer("window", window) | |
self.num_bins = self.n_fft // 2 + 1 | |
self.sample_rate = sample_rate | |
self.model = OpenUnmix( | |
nb_channels=self.n_channels, | |
nb_bins=self.num_bins, | |
) | |
self.separator = Separator( | |
target_models={"other": self.model}, | |
nb_channels=self.n_channels, | |
sample_rate=self.sample_rate, | |
n_fft=self.n_fft, | |
n_hop=self.hop_length, | |
) | |
self.loss_fn = MultiResolutionSTFTLoss( | |
n_bins=self.num_bins, sample_rate=self.sample_rate | |
) | |
def forward(self, batch): | |
x, target, label = batch | |
X = spectrogram(x, self.window, self.n_fft, self.hop_length, self.alpha) | |
Y = self.model(X) | |
sep_out = self.separator(x).squeeze(1) | |
loss = self.loss_fn(sep_out, target) | |
return loss, sep_out | |
def sample(self, x: Tensor) -> Tensor: | |
return self.separator(x).squeeze(1) | |
class DemucsModel(torch.nn.Module): | |
def __init__(self, sample_rate, **kwargs) -> None: | |
super().__init__() | |
self.model = HDemucs(**kwargs) | |
self.num_bins = kwargs["nfft"] // 2 + 1 | |
self.loss_fn = MultiResolutionSTFTLoss( | |
n_bins=self.num_bins, sample_rate=sample_rate | |
) | |
def forward(self, batch): | |
x, target, label = batch | |
output = self.model(x).squeeze(1) | |
loss = self.loss_fn(output, target) | |
return loss, output | |
def sample(self, x: Tensor) -> Tensor: | |
return self.model(x).squeeze(1) | |
class DiffusionGenerationModel(nn.Module): | |
def __init__(self, n_channels: int = 1): | |
super().__init__() | |
self.model = DiffusionModel(in_channels=n_channels) | |
def forward(self, batch): | |
x, target, label = batch | |
sampled_out = self.model.sample(x) | |
return self.model(x), sampled_out | |
def sample(self, x: Tensor, num_steps: int = 10) -> Tensor: | |
noise = torch.randn(x.shape).to(x) | |
return self.model.sample(noise, num_steps=num_steps) | |
def log_wandb_audio_batch( | |
logger: pl.loggers.WandbLogger, | |
id: str, | |
samples: Tensor, | |
sampling_rate: int, | |
caption: str = "", | |
): | |
num_items = samples.shape[0] | |
samples = rearrange(samples, "b c t -> b t c") | |
for idx in range(num_items): | |
logger.experiment.log( | |
{ | |
f"{id}_{idx}": wandb.Audio( | |
samples[idx].cpu().numpy(), | |
caption=caption, | |
sample_rate=sampling_rate, | |
) | |
} | |
) | |
def spectrogram( | |
x: torch.Tensor, | |
window: torch.Tensor, | |
n_fft: int, | |
hop_length: int, | |
alpha: float, | |
) -> torch.Tensor: | |
bs, chs, samp = x.size() | |
x = x.view(bs * chs, -1) # move channels onto batch dim | |
X = torch.stft( | |
x, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
window=window, | |
return_complex=True, | |
) | |
# move channels back | |
X = X.view(bs, chs, X.shape[-2], X.shape[-1]) | |
return torch.pow(X.abs() + 1e-8, alpha) | |