Spaces:
Sleeping
Sleeping
File size: 6,685 Bytes
90cacdf 8125531 90cacdf 8125531 7d6f241 90cacdf 8125531 d8d3e30 8125531 d8d3e30 8125531 d8d3e30 8125531 7d6f241 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import logging
from typing import List, Tuple
import pytorch_lightning as pl
from omegaconf import DictConfig
from pytorch_lightning.utilities import rank_zero_only
from frechet_audio_distance import FrechetAudioDistance
import numpy as np
import torch
import torchaudio
from torch import Tensor, nn
import wandb
from einops import rearrange
from torch._six import container_abcs
def get_logger(name=__name__) -> logging.Logger:
"""Initializes multi-GPU-friendly python command line logger."""
logger = logging.getLogger(name)
# this ensures all logging levels get marked with the rank zero decorator
# otherwise logs would get multiplied for each GPU process in multi-GPU setup
for level in (
"debug",
"info",
"warning",
"error",
"exception",
"fatal",
"critical",
):
setattr(logger, level, rank_zero_only(getattr(logger, level)))
return logger
log = get_logger(__name__)
@rank_zero_only
def log_hyperparameters(
config: DictConfig,
model: pl.LightningModule,
datamodule: pl.LightningDataModule,
trainer: pl.Trainer,
callbacks: List[pl.Callback],
logger: pl.loggers.logger.Logger,
) -> None:
"""Controls which config parts are saved by Lightning loggers.
Additionaly saves:
- number of model parameters
"""
if not trainer.logger:
return
hparams = {}
# choose which parts of hydra config will be saved to loggers
hparams["model"] = config["model"]
# save number of model parameters
hparams["model/params/total"] = sum(p.numel() for p in model.parameters())
hparams["model/params/trainable"] = sum(
p.numel() for p in model.parameters() if p.requires_grad
)
hparams["model/params/non_trainable"] = sum(
p.numel() for p in model.parameters() if not p.requires_grad
)
hparams["datamodule"] = config["datamodule"]
hparams["trainer"] = config["trainer"]
if "seed" in config:
hparams["seed"] = config["seed"]
if "callbacks" in config:
hparams["callbacks"] = config["callbacks"]
logger.experiment.config.update(hparams)
class FADLoss(torch.nn.Module):
def __init__(self, sample_rate: float):
super().__init__()
self.fad = FrechetAudioDistance(
use_pca=False, use_activation=False, verbose=False
)
self.fad.model = self.fad.model.to("cpu")
self.sr = sample_rate
def forward(self, audio_background, audio_eval):
embds_background = []
embds_eval = []
for sample in audio_background:
embd = self.fad.model.forward(sample.T.cpu().detach().numpy(), self.sr)
embds_background.append(embd.cpu().detach().numpy())
for sample in audio_eval:
embd = self.fad.model.forward(sample.T.cpu().detach().numpy(), self.sr)
embds_eval.append(embd.cpu().detach().numpy())
embds_background = np.concatenate(embds_background, axis=0)
embds_eval = np.concatenate(embds_eval, axis=0)
mu_background, sigma_background = self.fad.calculate_embd_statistics(
embds_background
)
mu_eval, sigma_eval = self.fad.calculate_embd_statistics(embds_eval)
fad_score = self.fad.calculate_frechet_distance(
mu_background, sigma_background, mu_eval, sigma_eval
)
return fad_score
def create_random_chunks(
audio_file: str, chunk_size: int, num_chunks: int
) -> Tuple[List[Tuple[int, int]], int]:
"""Create num_chunks random chunks of size chunk_size (seconds)
from an audio file.
Return sample_index of start of each chunk and original sr
"""
audio, sr = torchaudio.load(audio_file)
chunk_size_in_samples = chunk_size * sr
if chunk_size_in_samples >= audio.shape[-1]:
chunk_size_in_samples = audio.shape[-1] - 1
chunks = []
for i in range(num_chunks):
start = torch.randint(0, audio.shape[-1] - chunk_size_in_samples, (1,)).item()
chunks.append(start)
return chunks, sr
def create_sequential_chunks(
audio_file: str, chunk_size: int
) -> Tuple[List[Tuple[int, int]], int]:
"""Create sequential chunks of size chunk_size (seconds) from an audio file.
Return sample_index of start of each chunk and original sr
"""
chunks = []
audio, sr = torchaudio.load(audio_file)
chunk_starts = torch.arange(0, audio.shape[-1], chunk_size)
for start in chunk_starts:
if start + chunk_size > audio.shape[-1]:
break
chunks.append(audio[:, start : start + chunk_size])
return chunks, sr
def log_wandb_audio_batch(
logger: pl.loggers.WandbLogger,
id: str,
samples: Tensor,
sampling_rate: int,
caption: str = "",
max_items: int = 10,
):
num_items = samples.shape[0]
samples = rearrange(samples, "b c t -> b t c")
for idx in range(num_items):
if idx >= max_items:
break
logger.experiment.log(
{
f"{id}_{idx}": wandb.Audio(
samples[idx].cpu().numpy(),
caption=caption,
sample_rate=sampling_rate,
)
}
)
def spectrogram(
x: torch.Tensor,
window: torch.Tensor,
n_fft: int,
hop_length: int,
alpha: float,
) -> torch.Tensor:
bs, chs, samp = x.size()
x = x.view(bs * chs, -1) # move channels onto batch dim
X = torch.stft(
x,
n_fft=n_fft,
hop_length=hop_length,
window=window,
return_complex=True,
)
# move channels back
X = X.view(bs, chs, X.shape[-2], X.shape[-1])
return torch.pow(X.abs() + 1e-8, alpha)
def init_layer(layer):
"""Initialize a Linear or Convolutional layer."""
nn.init.xavier_uniform_(layer.weight)
if hasattr(layer, "bias"):
if layer.bias is not None:
layer.bias.data.fill_(0.0)
def init_bn(bn):
"""Initialize a Batchnorm layer."""
bn.bias.data.fill_(0.0)
bn.weight.data.fill_(1.0)
def _ntuple(n: int):
def parse(x):
if isinstance(x, container_abcs.Iterable):
return x
return tuple([x] * n)
return parse
single = _ntuple(1)
def concat_complex(a: torch.tensor, b: torch.tensor, dim: int = 1) -> torch.tensor:
"""
Concatenate two complex tensors in same dimension concept
:param a: complex tensor
:param b: another complex tensor
:param dim: target dimension
:return: concatenated tensor
"""
a_real, a_img = a.chunk(2, dim)
b_real, b_img = b.chunk(2, dim)
return torch.cat([a_real, b_real, a_img, b_img], dim=dim)
|