File size: 12,158 Bytes
90cacdf
7ac8557
90cacdf
7ac8557
90cacdf
7ac8557
90cacdf
ff526b3
1e53a02
90cacdf
7ac8557
7d6f241
 
 
90cacdf
 
7d6f241
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6f241
ff526b3
 
1e53a02
e0a5f6f
ff526b3
 
f73ffe0
d2155c7
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d3e30
 
 
 
 
 
 
 
5570d2c
 
d8d3e30
 
 
 
 
 
 
 
 
 
 
 
90cacdf
 
 
 
 
 
ff526b3
90cacdf
8125531
 
 
 
90cacdf
7d6f241
 
6448f47
90cacdf
ff526b3
b99be38
 
 
 
 
 
 
e8a69d9
 
 
b99be38
 
 
 
 
 
 
 
 
ff526b3
90cacdf
 
dfbeb31
8125531
d2155c7
6448f47
7f70614
513dd20
 
d2155c7
3b4e474
 
d2155c7
 
3b4e474
 
 
d2155c7
 
 
 
 
 
 
 
3b4e474
 
6448f47
8125531
 
 
 
 
 
 
b676040
 
 
8125531
 
 
 
 
 
 
 
 
61b9249
 
 
 
 
ff526b3
61b9249
 
 
 
 
 
 
 
 
 
 
 
 
 
b175ee9
8125531
236c7a5
 
6448f47
236c7a5
f6e5f6d
 
236c7a5
 
 
 
 
 
90cacdf
 
7d6f241
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e53a02
90cacdf
 
7d6f241
90cacdf
 
6448f47
90cacdf
 
 
1ff07dc
90cacdf
ff526b3
90cacdf
 
 
 
 
7d6f241
1dd1464
 
 
 
1e53a02
b676040
1dd1464
7d6f241
1dd1464
 
6448f47
1dd1464
1ff07dc
1dd1464
 
 
 
 
 
90cacdf
 
 
 
 
 
6448f47
ff526b3
 
90cacdf
 
 
 
 
 
7d6f241
 
 
 
 
 
7ac8557
7d6f241
7ac8557
7d6f241
 
 
 
 
7ac8557
7d6f241
 
7ac8557
 
7d6f241
 
7ac8557
7d6f241
 
 
7ac8557
7d6f241
7ac8557
7d6f241
 
 
 
 
7ac8557
7d6f241
 
7ac8557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6f241
7ac8557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import torch
import torchmetrics
import pytorch_lightning as pl
from torch import Tensor, nn
from einops import rearrange
from torchaudio.models import HDemucs
from audio_diffusion_pytorch import DiffusionModel
from auraloss.time import SISDRLoss
from auraloss.freq import MultiResolutionSTFTLoss
from umx.openunmix.model import OpenUnmix, Separator

from utils import FADLoss, spectrogram, log_wandb_audio_batch
from dptnet import DPTNet_base
from dcunet import RefineSpectrogramUnet


class RemFX(pl.LightningModule):
    def __init__(
        self,
        lr: float,
        lr_beta1: float,
        lr_beta2: float,
        lr_eps: float,
        lr_weight_decay: float,
        sample_rate: float,
        network: nn.Module,
    ):
        super().__init__()
        self.lr = lr
        self.lr_beta1 = lr_beta1
        self.lr_beta2 = lr_beta2
        self.lr_eps = lr_eps
        self.lr_weight_decay = lr_weight_decay
        self.sample_rate = sample_rate
        self.model = network
        self.metrics = nn.ModuleDict(
            {
                "SISDR": SISDRLoss(),
                "STFT": MultiResolutionSTFTLoss(),
                "FAD": FADLoss(sample_rate=sample_rate),
            }
        )
        # Log first batch metrics input vs output only once
        self.log_train_audio = True

    @property
    def device(self):
        return next(self.model.parameters()).device

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(
            list(self.model.parameters()),
            lr=self.lr,
            betas=(self.lr_beta1, self.lr_beta2),
            eps=self.lr_eps,
            weight_decay=self.lr_weight_decay,
        )
        return optimizer

    # Add step-based learning rate scheduler
    def optimizer_step(
        self,
        epoch,
        batch_idx,
        optimizer,
        optimizer_idx,
        optimizer_closure,
        on_tpu,
        using_lbfgs,
    ):
        # update params
        optimizer.step(closure=optimizer_closure)

        # update learning rate. Reduce by factor of 10 at 80% and 95% of training
        if self.trainer.global_step == 0.8 * self.trainer.max_steps:
            for pg in optimizer.param_groups:
                pg["lr"] = 0.1 * pg["lr"]
        if self.trainer.global_step == 0.95 * self.trainer.max_steps:
            for pg in optimizer.param_groups:
                pg["lr"] = 0.1 * pg["lr"]

    def training_step(self, batch, batch_idx):
        loss = self.common_step(batch, batch_idx, mode="train")
        return loss

    def validation_step(self, batch, batch_idx):
        loss = self.common_step(batch, batch_idx, mode="valid")
        return loss

    def test_step(self, batch, batch_idx):
        loss = self.common_step(batch, batch_idx, mode="test")
        return loss

    def common_step(self, batch, batch_idx, mode: str = "train"):
        x, y, _, _ = batch  # x, y = (B, C, T), (B, C, T)

        loss, output = self.model((x, y))
        self.log(f"{mode}_loss", loss)
        # Metric logging
        with torch.no_grad():
            for metric in self.metrics:
                # SISDR returns negative values, so negate them
                if metric == "SISDR":
                    negate = -1
                else:
                    negate = 1
                # Only Log FAD on test set
                if metric == "FAD" and mode != "test":
                    continue
                self.log(
                    f"{mode}_{metric}",
                    negate * self.metrics[metric](output, y),
                    on_step=False,
                    on_epoch=True,
                    logger=True,
                    prog_bar=True,
                    sync_dist=True,
                )

        return loss

    def on_train_batch_start(self, batch, batch_idx):
        # Log initial audio
        if self.log_train_audio:
            x, y, _, _ = batch
            # Concat samples together for easier viewing in dashboard
            input_samples = rearrange(x, "b c t -> c (b t)").unsqueeze(0)
            target_samples = rearrange(y, "b c t -> c (b t)").unsqueeze(0)

            log_wandb_audio_batch(
                logger=self.logger,
                id="input_effected_audio",
                samples=input_samples.cpu(),
                sampling_rate=self.sample_rate,
                caption="Training Data",
            )
            log_wandb_audio_batch(
                logger=self.logger,
                id="target_audio",
                samples=target_samples.cpu(),
                sampling_rate=self.sample_rate,
                caption="Target Data",
            )
            self.log_train_audio = False

    def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
        x, target, _, _ = batch
        # Log Input Metrics
        for metric in self.metrics:
            # SISDR returns negative values, so negate them
            if metric == "SISDR":
                negate = -1
            else:
                negate = 1
            # Only Log FAD on test set
            if metric == "FAD":
                continue
            self.log(
                f"Input_{metric}",
                negate * self.metrics[metric](x, target),
                on_step=False,
                on_epoch=True,
                logger=True,
                prog_bar=True,
                sync_dist=True,
            )
        # Only run on first batch
        if batch_idx == 0:
            self.model.eval()
            with torch.no_grad():
                y = self.model.sample(x)

            # Concat samples together for easier viewing in dashboard
            # 2 seconds of silence between each sample
            silence = torch.zeros_like(x)
            silence = silence[:, : self.sample_rate * 2]

            concat_samples = torch.cat([y, silence, x, silence, target], dim=-1)
            log_wandb_audio_batch(
                logger=self.logger,
                id="prediction_input_target",
                samples=concat_samples.cpu(),
                sampling_rate=self.sample_rate,
                caption=f"Epoch {self.current_epoch}",
            )
            self.model.train()

    def on_test_batch_start(self, batch, batch_idx, dataloader_idx):
        self.on_validation_batch_start(batch, batch_idx, dataloader_idx)
        # Log FAD
        x, target, _, _ = batch
        self.log(
            "Input_FAD",
            self.metrics["FAD"](x, target),
            on_step=False,
            on_epoch=True,
            logger=True,
            prog_bar=True,
            sync_dist=True,
        )


class OpenUnmixModel(nn.Module):
    def __init__(
        self,
        n_fft: int = 2048,
        hop_length: int = 512,
        n_channels: int = 1,
        alpha: float = 0.3,
        sample_rate: int = 22050,
    ):
        super().__init__()
        self.n_channels = n_channels
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.alpha = alpha
        window = torch.hann_window(n_fft)
        self.register_buffer("window", window)

        self.num_bins = self.n_fft // 2 + 1
        self.sample_rate = sample_rate
        self.model = OpenUnmix(
            nb_channels=self.n_channels,
            nb_bins=self.num_bins,
        )
        self.separator = Separator(
            target_models={"other": self.model},
            nb_channels=self.n_channels,
            sample_rate=self.sample_rate,
            n_fft=self.n_fft,
            n_hop=self.hop_length,
        )
        self.mrstftloss = MultiResolutionSTFTLoss(
            n_bins=self.num_bins, sample_rate=self.sample_rate
        )
        self.l1loss = nn.L1Loss()

    def forward(self, batch):
        x, target = batch
        X = spectrogram(x, self.window, self.n_fft, self.hop_length, self.alpha)
        Y = self.model(X)
        sep_out = self.separator(x).squeeze(1)
        loss = self.mrstftloss(sep_out, target) + self.l1loss(sep_out, target) * 100

        return loss, sep_out

    def sample(self, x: Tensor) -> Tensor:
        return self.separator(x).squeeze(1)


class DemucsModel(nn.Module):
    def __init__(self, sample_rate, **kwargs) -> None:
        super().__init__()
        self.model = HDemucs(**kwargs)
        self.num_bins = kwargs["nfft"] // 2 + 1
        self.mrstftloss = MultiResolutionSTFTLoss(
            n_bins=self.num_bins, sample_rate=sample_rate
        )
        self.l1loss = nn.L1Loss()

    def forward(self, batch):
        x, target = batch
        output = self.model(x).squeeze(1)
        loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
        return loss, output

    def sample(self, x: Tensor) -> Tensor:
        return self.model(x).squeeze(1)


class DiffusionGenerationModel(nn.Module):
    def __init__(self, n_channels: int = 1):
        super().__init__()
        self.model = DiffusionModel(in_channels=n_channels)

    def forward(self, batch):
        x, target = batch
        sampled_out = self.model.sample(x)
        return self.model(x), sampled_out

    def sample(self, x: Tensor, num_steps: int = 10) -> Tensor:
        noise = torch.randn(x.shape).to(x)
        return self.model.sample(noise, num_steps=num_steps)


class DPTNetModel(nn.Module):
    def __init__(self, sample_rate, **kwargs):
        super().__init__()
        self.model = DPTNet_base(**kwargs)
        self.mrstftloss = MultiResolutionSTFTLoss(
            n_bins=self.num_bins, sample_rate=sample_rate
        )
        self.l1loss = nn.L1Loss()

    def forward(self, batch):
        x, target = batch
        output = self.model(x).squeeze(1)
        loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
        return loss, output

    def sample(self, x: Tensor) -> Tensor:
        return self.model.sample(x)


class DCUNetModel(nn.Module):
    def __init__(self, sample_rate, **kwargs):
        super().__init__()
        self.model = RefineSpectrogramUnet(**kwargs)
        self.mrstftloss = MultiResolutionSTFTLoss(
            n_bins=self.num_bins, sample_rate=sample_rate
        )
        self.l1loss = nn.L1Loss()

    def forward(self, batch):
        x, target = batch
        output = self.model(x).squeeze(1)
        loss = self.mrstftloss(output, target) + self.l1loss(output, target) * 100
        return loss, output

    def sample(self, x: Tensor) -> Tensor:
        return self.model.sample(x)


class FXClassifier(pl.LightningModule):
    def __init__(
        self,
        lr: float,
        lr_weight_decay: float,
        sample_rate: float,
        network: nn.Module,
    ):
        super().__init__()
        self.lr = lr
        self.lr_weight_decay = lr_weight_decay
        self.sample_rate = sample_rate
        self.network = network

    def forward(self, x: torch.Tensor):
        return self.network(x)

    def common_step(self, batch, batch_idx, mode: str = "train"):
        x, y, dry_label, wet_label = batch
        pred_label = self.network(x)
        loss = nn.functional.cross_entropy(pred_label, dry_label)
        self.log(
            f"{mode}_loss",
            loss,
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
            sync_dist=True,
        )

        self.log(
            f"{mode}_mAP",
            torchmetrics.functional.retrieval_average_precision(
                pred_label, dry_label.long()
            ),
            on_step=True,
            on_epoch=True,
            prog_bar=True,
            logger=True,
            sync_dist=True,
        )

        return loss

    def training_step(self, batch, batch_idx):
        return self.common_step(batch, batch_idx, mode="train")

    def validation_step(self, batch, batch_idx):
        return self.common_step(batch, batch_idx, mode="valid")

    def test_step(self, batch, batch_idx):
        return self.common_step(batch, batch_idx, mode="test")

    def configure_optimizers(self):
        optimizer = torch.optim.AdamW(
            self.network.parameters(),
            lr=self.lr,
            weight_decay=self.lr_weight_decay,
        )
        return optimizer