File size: 1,938 Bytes
90cacdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import logging
from typing import List
import pytorch_lightning as pl
from omegaconf import DictConfig
from pytorch_lightning.utilities import rank_zero_only


def get_logger(name=__name__) -> logging.Logger:
    """Initializes multi-GPU-friendly python command line logger."""

    logger = logging.getLogger(name)

    # this ensures all logging levels get marked with the rank zero decorator
    # otherwise logs would get multiplied for each GPU process in multi-GPU setup
    for level in (
        "debug",
        "info",
        "warning",
        "error",
        "exception",
        "fatal",
        "critical",
    ):
        setattr(logger, level, rank_zero_only(getattr(logger, level)))

    return logger


log = get_logger(__name__)


@rank_zero_only
def log_hyperparameters(
    config: DictConfig,
    model: pl.LightningModule,
    datamodule: pl.LightningDataModule,
    trainer: pl.Trainer,
    callbacks: List[pl.Callback],
    logger: pl.loggers.logger.Logger,
) -> None:
    """Controls which config parts are saved by Lightning loggers.
    Additionaly saves:
    - number of model parameters
    """

    if not trainer.logger:
        return

    hparams = {}

    # choose which parts of hydra config will be saved to loggers
    hparams["model"] = config["model"]

    # save number of model parameters
    hparams["model/params/total"] = sum(p.numel() for p in model.parameters())
    hparams["model/params/trainable"] = sum(
        p.numel() for p in model.parameters() if p.requires_grad
    )
    hparams["model/params/non_trainable"] = sum(
        p.numel() for p in model.parameters() if not p.requires_grad
    )

    hparams["datamodule"] = config["datamodule"]
    hparams["trainer"] = config["trainer"]

    if "seed" in config:
        hparams["seed"] = config["seed"]
    if "callbacks" in config:
        hparams["callbacks"] = config["callbacks"]

    logger.experiment.config.update(hparams)