File size: 8,907 Bytes
d254115
 
 
d8f7979
 
 
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4fcfb
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4fcfb
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4fcfb
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4fcfb
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f23c3
d8f7979
 
 
d254115
 
 
 
 
 
 
 
3c4fcfb
 
 
 
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29f23c3
 
568c3f1
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8f7979
 
 
 
 
d254115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
568c3f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch
import torchaudio
import torch.nn as nn
import hearbaseline
import hearbaseline.vggish
import hearbaseline.wav2vec2

import wav2clip_hear
import panns_hear


import torch.nn.functional as F
from remfx.utils import init_bn, init_layer


class PANNs(torch.nn.Module):
    def __init__(
        self, num_classes: int, sample_rate: float, hidden_dim: int = 256
    ) -> None:
        super().__init__()
        self.num_classes = num_classes
        self.model = panns_hear.load_model("hear2021-panns_hear.pth")
        self.resample = torchaudio.transforms.Resample(
            orig_freq=sample_rate, new_freq=32000
        )
        self.proj = torch.nn.Sequential(
            torch.nn.Linear(2048, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, num_classes),
        )

    def forward(self, x: torch.Tensor, **kwargs):
        with torch.no_grad():
            x = self.resample(x)
            embed = panns_hear.get_scene_embeddings(x.view(x.shape[0], -1), self.model)
        return self.proj(embed)


class Wav2CLIP(nn.Module):
    def __init__(
        self,
        num_classes: int,
        sample_rate: float,
        hidden_dim: int = 256,
    ) -> None:
        super().__init__()
        self.num_classes = num_classes
        self.model = wav2clip_hear.load_model("")
        self.resample = torchaudio.transforms.Resample(
            orig_freq=sample_rate, new_freq=16000
        )
        self.proj = torch.nn.Sequential(
            torch.nn.Linear(512, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, num_classes),
        )

    def forward(self, x: torch.Tensor, **kwargs):
        with torch.no_grad():
            x = self.resample(x)
            embed = wav2clip_hear.get_scene_embeddings(
                x.view(x.shape[0], -1), self.model
            )
        return self.proj(embed)


class VGGish(nn.Module):
    def __init__(
        self,
        num_classes: int,
        sample_rate: float,
        hidden_dim: int = 256,
    ):
        super().__init__()
        self.num_classes = num_classes
        self.resample = torchaudio.transforms.Resample(
            orig_freq=sample_rate, new_freq=16000
        )
        self.model = hearbaseline.vggish.load_model()
        self.proj = torch.nn.Sequential(
            torch.nn.Linear(128, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, num_classes),
        )

    def forward(self, x: torch.Tensor, **kwargs):
        with torch.no_grad():
            x = self.resample(x)
            embed = hearbaseline.vggish.get_scene_embeddings(
                x.view(x.shape[0], -1), self.model
            )
        return self.proj(embed)


class wav2vec2(nn.Module):
    def __init__(
        self,
        num_classes: int,
        sample_rate: float,
        hidden_dim: int = 256,
    ):
        super().__init__()
        self.num_classes = num_classes
        self.resample = torchaudio.transforms.Resample(
            orig_freq=sample_rate, new_freq=16000
        )
        self.model = hearbaseline.wav2vec2.load_model()
        self.proj = torch.nn.Sequential(
            torch.nn.Linear(1024, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, hidden_dim),
            torch.nn.ReLU(),
            torch.nn.Linear(hidden_dim, num_classes),
        )

    def forward(self, x: torch.Tensor, **kwargs):
        with torch.no_grad():
            x = self.resample(x)
            embed = hearbaseline.wav2vec2.get_scene_embeddings(
                x.view(x.shape[0], -1), self.model
            )
        return self.proj(embed)


# adapted from https://github.com/qiuqiangkong/audioset_tagging_cnn/blob/master/pytorch/models.py


class Cnn14(nn.Module):
    def __init__(
        self,
        num_classes: int,
        sample_rate: float,
        model_sample_rate: float,
        n_fft: int = 1024,
        hop_length: int = 256,
        n_mels: int = 128,
        specaugment: bool = False,
    ):
        super().__init__()
        self.num_classes = num_classes
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.sample_rate = sample_rate
        self.model_sample_rate = model_sample_rate
        self.specaugment = specaugment

        window = torch.hann_window(n_fft)
        self.register_buffer("window", window)

        self.melspec = torchaudio.transforms.MelSpectrogram(
            model_sample_rate,
            n_fft,
            hop_length=hop_length,
            n_mels=n_mels,
        )

        self.bn0 = nn.BatchNorm2d(n_mels)

        self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
        self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
        self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
        self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
        self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
        self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)

        self.fc1 = nn.Linear(2048, 2048, bias=True)

        self.heads = torch.nn.ModuleList()
        for _ in range(num_classes):
            self.heads.append(nn.Linear(2048, 1, bias=True))

        self.init_weight()

        if sample_rate != model_sample_rate:
            self.resample = torchaudio.transforms.Resample(
                orig_freq=sample_rate, new_freq=model_sample_rate
            )

        if self.specaugment:
            self.freq_mask = torchaudio.transforms.FrequencyMasking(64, True)
            self.time_mask = torchaudio.transforms.TimeMasking(128, True)

    def init_weight(self):
        init_bn(self.bn0)
        init_layer(self.fc1)

    def forward(self, x: torch.Tensor, train: bool = False):
        """
        Input: (batch_size, data_length)"""

        if self.sample_rate != self.model_sample_rate:
            x = self.resample(x)

        x = self.melspec(x)

        if self.specaugment and train:
            x = self.freq_mask(x)
            x = self.time_mask(x)

        # apply standardization
        x = (x - x.mean(dim=(2, 3), keepdim=True)) / x.std(dim=(2, 3), keepdim=True)

        x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg")
        x = F.dropout(x, p=0.2, training=train)
        x = torch.mean(x, dim=3)

        (x1, _) = torch.max(x, dim=2)
        x2 = torch.mean(x, dim=2)
        x = x1 + x2
        x = F.dropout(x, p=0.5, training=train)
        x = F.relu_(self.fc1(x))

        outputs = []
        for head in self.heads:
            outputs.append(torch.sigmoid(head(x)))

        return outputs


class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(ConvBlock, self).__init__()

        self.conv1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=(3, 3),
            stride=(1, 1),
            padding=(1, 1),
            bias=False,
        )

        self.conv2 = nn.Conv2d(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=(3, 3),
            stride=(1, 1),
            padding=(1, 1),
            bias=False,
        )

        self.bn1 = nn.BatchNorm2d(out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.init_weight()

    def init_weight(self):
        init_layer(self.conv1)
        init_layer(self.conv2)
        init_bn(self.bn1)
        init_bn(self.bn2)

    def forward(self, input, pool_size=(2, 2), pool_type="avg"):
        x = input
        x = F.relu_(self.bn1(self.conv1(x)))
        x = F.relu_(self.bn2(self.conv2(x)))
        if pool_type == "max":
            x = F.max_pool2d(x, kernel_size=pool_size)
        elif pool_type == "avg":
            x = F.avg_pool2d(x, kernel_size=pool_size)
        elif pool_type == "avg+max":
            x1 = F.avg_pool2d(x, kernel_size=pool_size)
            x2 = F.max_pool2d(x, kernel_size=pool_size)
            x = x1 + x2
        else:
            raise Exception("Incorrect argument!")

        return x