Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import transformers
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the pre-trained text classification model from Hugging Face
|
7 |
+
model_name = "bert-base-uncased"
|
8 |
+
num_labels = 2
|
9 |
+
|
10 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
|
13 |
+
def classify_text(text):
|
14 |
+
# Preprocess the text input
|
15 |
+
encoded_text = tokenizer(text, truncation=True, padding=True, return_tensors="pt")
|
16 |
+
|
17 |
+
# Make predictions using the pre-trained model
|
18 |
+
with torch.no_grad():
|
19 |
+
outputs = model(**encoded_text)
|
20 |
+
logits = outputs.logits
|
21 |
+
predictions = np.argmax(logits, axis=1)
|
22 |
+
|
23 |
+
# Convert predictions to class labels
|
24 |
+
class_labels = ["positive", "negative"]
|
25 |
+
predicted_labels = [class_labels[i] for i in predictions]
|
26 |
+
|
27 |
+
# Return the predicted labels
|
28 |
+
return predicted_labels
|
29 |
+
|
30 |
+
# Initialize the Streamlit app
|
31 |
+
st.title("Text Classification Demo")
|
32 |
+
|
33 |
+
# Create the text input field
|
34 |
+
input_text = st.text_input("Enter text to classify:", "")
|
35 |
+
|
36 |
+
# Make predictions and display the results
|
37 |
+
if input_text:
|
38 |
+
predicted_labels = classify_text(input_text)
|
39 |
+
st.write("Predicted labels:", predicted_labels)
|