Spaces:
Runtime error
Runtime error
add download element
Browse files
app.py
CHANGED
|
@@ -1,16 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
# import spaces
|
| 4 |
-
import torch
|
| 5 |
-
import random
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
from diffusers import FluxKontextPipeline
|
| 9 |
from diffusers.utils import load_image
|
|
|
|
| 10 |
|
| 11 |
MAX_SEED = np.iinfo(np.int32).max
|
| 12 |
|
| 13 |
-
pipe = FluxKontextPipeline.from_pretrained("fuliucansheng/FLUX.1-Kontext-dev-diffusers", torch_dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
# @spaces.GPU
|
| 16 |
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
|
@@ -74,11 +85,22 @@ def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5
|
|
| 74 |
num_inference_steps=steps,
|
| 75 |
generator=torch.Generator().manual_seed(seed),
|
| 76 |
).images[0]
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
# @spaces.GPU
|
| 80 |
def infer_example(input_image, prompt):
|
| 81 |
image, seed, _ = infer(input_image, prompt)
|
|
|
|
|
|
|
| 82 |
return image, seed
|
| 83 |
|
| 84 |
css="""
|
|
@@ -90,7 +112,11 @@ css="""
|
|
| 90 |
height: 70vh; !Important
|
| 91 |
}
|
| 92 |
#row {
|
| 93 |
-
min-height:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
}
|
| 95 |
"""
|
| 96 |
|
|
@@ -108,17 +134,22 @@ Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro
|
|
| 108 |
result = gr.Image(label="Result", show_label=False, interactive=False, elem_classes="input-image", elem_id="row")
|
| 109 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 110 |
|
| 111 |
-
with gr.Row():
|
|
|
|
| 112 |
prompt = gr.Text(
|
| 113 |
label="Prompt",
|
| 114 |
-
show_label=
|
| 115 |
-
|
|
|
|
| 116 |
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
|
| 117 |
-
container=
|
| 118 |
-
scale=
|
| 119 |
)
|
|
|
|
|
|
|
|
|
|
| 120 |
run_button = gr.Button("Run", scale=1)
|
| 121 |
-
|
| 122 |
with gr.Row():
|
| 123 |
with gr.Accordion("Advanced Settings", open=False):
|
| 124 |
|
|
@@ -155,7 +186,7 @@ Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro
|
|
| 155 |
["cat.png", "make this cat happy"]
|
| 156 |
],
|
| 157 |
inputs=[input_image, prompt],
|
| 158 |
-
outputs=[result, seed],
|
| 159 |
fn=infer_example,
|
| 160 |
cache_examples=False
|
| 161 |
)
|
|
@@ -164,7 +195,7 @@ Image editing and manipulation model guidance-distilled from FLUX.1 Kontext [pro
|
|
| 164 |
triggers=[run_button.click, prompt.submit],
|
| 165 |
fn = infer,
|
| 166 |
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
|
| 167 |
-
outputs = [result, seed, reuse_button]
|
| 168 |
)
|
| 169 |
reuse_button.click(
|
| 170 |
fn = lambda image: image,
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gc
|
| 3 |
+
import random
|
| 4 |
+
import tempfile
|
| 5 |
+
import torch
|
| 6 |
+
import devicetorch
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
# import spaces
|
|
|
|
|
|
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
from diffusers import FluxKontextPipeline
|
| 13 |
from diffusers.utils import load_image
|
| 14 |
+
from dfloat11 import DFloat11Model
|
| 15 |
|
| 16 |
MAX_SEED = np.iinfo(np.int32).max
|
| 17 |
|
| 18 |
+
pipe = FluxKontextPipeline.from_pretrained("fuliucansheng/FLUX.1-Kontext-dev-diffusers", torch_dtype=torch.bfloat16)
|
| 19 |
+
DFloat11Model.from_pretrained(
|
| 20 |
+
"DFloat11/FLUX.1-Kontext-dev-DF11",
|
| 21 |
+
device="cpu",
|
| 22 |
+
bfloat16_model=pipe.transformer,
|
| 23 |
+
)
|
| 24 |
+
pipe.enable_model_cpu_offload()
|
| 25 |
|
| 26 |
# @spaces.GPU
|
| 27 |
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
| 85 |
num_inference_steps=steps,
|
| 86 |
generator=torch.Generator().manual_seed(seed),
|
| 87 |
).images[0]
|
| 88 |
+
|
| 89 |
+
gradio_temp_dir = os.environ.get('GRADIO_TEMP_DIR', tempfile.gettempdir())
|
| 90 |
+
temp_file_path = os.path.join(gradio_temp_dir, "image.png")
|
| 91 |
+
image.save(temp_file_path, format="PNG")
|
| 92 |
+
print(f"Image saved in: {temp_file_path}")
|
| 93 |
+
|
| 94 |
+
gc.collect()
|
| 95 |
+
devicetorch.empty_cache(torch)
|
| 96 |
+
|
| 97 |
+
return image, temp_file_path, seed, gr.Button(visible=True)
|
| 98 |
|
| 99 |
# @spaces.GPU
|
| 100 |
def infer_example(input_image, prompt):
|
| 101 |
image, seed, _ = infer(input_image, prompt)
|
| 102 |
+
gc.collect()
|
| 103 |
+
devicetorch.empty_cache(torch)
|
| 104 |
return image, seed
|
| 105 |
|
| 106 |
css="""
|
|
|
|
| 112 |
height: 70vh; !Important
|
| 113 |
}
|
| 114 |
#row {
|
| 115 |
+
min-height: 40vh; !Important
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
+
#row-height {
|
| 119 |
+
height: 65px !important
|
| 120 |
}
|
| 121 |
"""
|
| 122 |
|
|
|
|
| 134 |
result = gr.Image(label="Result", show_label=False, interactive=False, elem_classes="input-image", elem_id="row")
|
| 135 |
reuse_button = gr.Button("Reuse this image", visible=False)
|
| 136 |
|
| 137 |
+
with gr.Row(equal_height=True):
|
| 138 |
+
with gr.Column():
|
| 139 |
prompt = gr.Text(
|
| 140 |
label="Prompt",
|
| 141 |
+
show_label=True,
|
| 142 |
+
lines=3,
|
| 143 |
+
max_lines=3,
|
| 144 |
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
|
| 145 |
+
container=True,
|
| 146 |
+
scale=1
|
| 147 |
)
|
| 148 |
+
|
| 149 |
+
with gr.Column():
|
| 150 |
+
download_image = gr.File(label="Download Image", elem_id="row-height", scale=0)
|
| 151 |
run_button = gr.Button("Run", scale=1)
|
| 152 |
+
|
| 153 |
with gr.Row():
|
| 154 |
with gr.Accordion("Advanced Settings", open=False):
|
| 155 |
|
|
|
|
| 186 |
["cat.png", "make this cat happy"]
|
| 187 |
],
|
| 188 |
inputs=[input_image, prompt],
|
| 189 |
+
outputs=[result, download_image, seed],
|
| 190 |
fn=infer_example,
|
| 191 |
cache_examples=False
|
| 192 |
)
|
|
|
|
| 195 |
triggers=[run_button.click, prompt.submit],
|
| 196 |
fn = infer,
|
| 197 |
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale, steps],
|
| 198 |
+
outputs = [result, download_image, seed, reuse_button]
|
| 199 |
)
|
| 200 |
reuse_button.click(
|
| 201 |
fn = lambda image: image,
|