Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
def dwt_init(x): | |
x01 = x[:, :, 0::2, :] / 2 | |
x02 = x[:, :, 1::2, :] / 2 | |
x1 = x01[:, :, :, 0::2] | |
x2 = x02[:, :, :, 0::2] | |
x3 = x01[:, :, :, 1::2] | |
x4 = x02[:, :, :, 1::2] | |
x_LL = x1 + x2 + x3 + x4 | |
x_HL = -x1 - x2 + x3 + x4 | |
x_LH = -x1 + x2 - x3 + x4 | |
x_HH = x1 - x2 - x3 + x4 | |
# print(x_HH[:, 0, :, :]) | |
return torch.cat((x_LL, x_HL, x_LH, x_HH), 1) | |
def iwt_init(x): | |
r = 2 | |
in_batch, in_channel, in_height, in_width = x.size() | |
out_batch, out_channel, out_height, out_width = in_batch, int(in_channel / (r ** 2)), r * in_height, r * in_width | |
x1 = x[:, 0:out_channel, :, :] / 2 | |
x2 = x[:, out_channel:out_channel * 2, :, :] / 2 | |
x3 = x[:, out_channel * 2:out_channel * 3, :, :] / 2 | |
x4 = x[:, out_channel * 3:out_channel * 4, :, :] / 2 | |
h = torch.zeros([out_batch, out_channel, out_height, out_width]).cuda() # | |
h[:, :, 0::2, 0::2] = x1 - x2 - x3 + x4 | |
h[:, :, 1::2, 0::2] = x1 - x2 + x3 - x4 | |
h[:, :, 0::2, 1::2] = x1 + x2 - x3 - x4 | |
h[:, :, 1::2, 1::2] = x1 + x2 + x3 + x4 | |
return h | |
class DWT(nn.Module): | |
def __init__(self): | |
super(DWT, self).__init__() | |
self.requires_grad = True | |
def forward(self, x): | |
return dwt_init(x) | |
class IWT(nn.Module): | |
def __init__(self): | |
super(IWT, self).__init__() | |
self.requires_grad = True | |
def forward(self, x): | |
return iwt_init(x) | |