Spaces:
Runtime error
Runtime error
File size: 7,008 Bytes
0123ece cc8ad2d 0123ece cc8ad2d 0123ece cc8ad2d 0123ece cc8ad2d 676c678 cc8ad2d 0123ece cc8ad2d 676c678 cc8ad2d 676c678 cc8ad2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# import gradio as gr
# from langchain.prompts import PromptTemplate
# from langchain_community.llms import CTransformers
# from langchain_community.vectorstores import Pinecone as LangchainPinecone
# from langchain.chains import RetrievalQA
# from pinecone import Pinecone
# from dotenv import load_dotenv
# import os
# # Load environment variables
# load_dotenv()
# PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
# index_name = "apple-chatbot"
# class AppleChatbot:
# def __init__(self, k=2, max_tokens=512, temperature=0.8):
# self.k = k
# self.max_tokens = max_tokens
# self.temperature = temperature
# self.qa_chain = self.initialize_chatbot()
# def download_hf_embeddings(self):
# from langchain_community.embeddings import HuggingFaceEmbeddings
# return HuggingFaceEmbeddings()
# def initialize_chatbot(self):
# embeddings = self.download_hf_embeddings()
# model_path = "TheBloke/Llama-2-7B-Chat-GGML"
# llm = CTransformers(
# model=model_path,
# model_type="llama",
# config={
# 'max_new_tokens': self.max_tokens,
# 'temperature': self.temperature
# }
# )
# # Initialize pinecone
# pc = Pinecone(api_key=PINECONE_API_KEY)
# index = pc.Index(index_name)
# # Use the same prompt template from your original application
# prompt_template = """
# You are an expert in apple cultivation and orchard management. Use the following pieces of context to answer the question at the end.
# If you don't know the answer, just say that you don't know, don't try to make up an answer.
# {context}
# Question: {question}
# Answer:"""
# PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
# chain_type_kwargs = {"prompt": PROMPT}
# docsearch = LangchainPinecone(index, embeddings.embed_query, "text")
# qa = RetrievalQA.from_chain_type(
# llm=llm,
# chain_type="stuff",
# retriever=docsearch.as_retriever(search_kwargs={'k': self.k}),
# return_source_documents=True,
# chain_type_kwargs=chain_type_kwargs
# )
# return qa
# def get_response(self, question):
# try:
# result = self.qa_chain({"query": question})
# return result["result"]
# except Exception as e:
# return f"Error: {str(e)}"
# # Initialize the chatbot
# chatbot = AppleChatbot()
# # Define the Gradio interface
# def respond(message, history):
# response = chatbot.get_response(message)
# return response
# # Create the Gradio interface
# demo = gr.ChatInterface(
# respond,
# chatbot=gr.Chatbot(height=600),
# textbox=gr.Textbox(placeholder="Ask me anything about apple cultivation...", container=False),
# title="Apple Orchard Expert Chatbot",
# description="Ask questions about apple cultivation and orchard management. Built with Langchain, Pinecone, and Llama-2.",
# theme=gr.themes.Soft(),
# examples=[
# "What are the ideal conditions for growing apples?",
# "How do I prevent common apple diseases?",
# "What is the best time to harvest apples?",
# ],
# cache_examples=False,
# )
# # Launch the interface
# if __name__ == "__main__":
# demo.queue() # Enable queuing
# demo.launch(
# server_name="0.0.0.0",
# server_port=7860,
# share=True
# )
import gradio as gr
from langchain.prompts import PromptTemplate
from langchain_community.vectorstores import Pinecone as LangchainPinecone
from langchain.chains import RetrievalQA
from pinecone import Pinecone
from dotenv import load_dotenv
import os
import google.generativeai as genai
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY')
index_name = "apple-chatbot"
class AppleChatbot:
def __init__(self, k=2, max_tokens=512, temperature=0.8):
self.k = k
self.max_tokens = max_tokens
self.temperature = temperature
self.qa_chain = self.initialize_chatbot()
def download_hf_embeddings(self):
from langchain_community.embeddings import HuggingFaceEmbeddings
return HuggingFaceEmbeddings()
def initialize_chatbot(self):
embeddings = self.download_hf_embeddings()
# Initialize Gemini
genai.configure(api_key=GEMINI_API_KEY)
llm = genai.GenerativeModel('gemini-pro')
# Initialize Pinecone
pc = Pinecone(api_key=PINECONE_API_KEY)
index = pc.Index(index_name)
# Use the same prompt template from your original application
prompt_template = """
You are an expert in apple cultivation and orchard management. Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Answer:"""
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain_type_kwargs = {"prompt": PROMPT}
docsearch = LangchainPinecone(index, embeddings.embed_query, "text")
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=docsearch.as_retriever(search_kwargs={'k': self.k}),
return_source_documents=True,
chain_type_kwargs=chain_type_kwargs
)
return qa
def get_response(self, question):
try:
result = self.qa_chain({"query": question})
return result["result"]
except Exception as e:
return f"Error: {str(e)}"
# Initialize the chatbot
chatbot = AppleChatbot()
# Define the Gradio interface
def respond(message, history):
response = chatbot.get_response(message)
return response
# Create the Gradio interface
demo = gr.ChatInterface(
respond,
chatbot=gr.Chatbot(height=600),
textbox=gr.Textbox(placeholder="Ask me anything about apple cultivation...", container=False),
title="Apple Orchard Expert Chatbot",
description="Ask questions about apple cultivation and orchard management. Built with Langchain, Pinecone, and Gemini.",
theme=gr.themes.Soft(),
examples=[
"What are the ideal conditions for growing apples?",
"How do I prevent common apple diseases?",
"What is the best time to harvest apples?",
],
cache_examples=False,
)
# Launch the interface
if __name__ == "__main__":
demo.queue() # Enable queuing
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
) |