adarsh
commited on
Commit
·
1fed04b
1
Parent(s):
a31a9c7
updated training metrics with pd and sns
Browse files- pages/page_1.py +60 -2
pages/page_1.py
CHANGED
@@ -1,10 +1,68 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
2 |
|
3 |
def main():
|
4 |
st.title("Training Metrics")
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
if __name__ == "__main__":
|
8 |
main()
|
9 |
-
|
10 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import seaborn as sns
|
4 |
+
import pandas as pd
|
5 |
|
6 |
def main():
|
7 |
st.title("Training Metrics")
|
8 |
|
9 |
|
10 |
+
st.markdown("#### Sweeps for hyperparameter tuning")
|
11 |
+
st.image("assets/img/cogni-bert-12sweeps.png", use_column_width=True )
|
12 |
+
|
13 |
+
data = [
|
14 |
+
{"val_loss": 0.60, "train_loss": 1.24, "val_f1": 0.82},
|
15 |
+
{"val_loss": 0.37, "train_loss": 0.44, "val_f1": 0.89},
|
16 |
+
{"val_loss": 0.39, "train_loss": 0.23, "val_f1": 0.88},
|
17 |
+
{"val_loss": 0.351, "train_loss": 0.13, "val_f1": 0.90},
|
18 |
+
{"val_loss": 0.353, "train_loss": 0.071, "val_f1": 0.922},
|
19 |
+
|
20 |
+
|
21 |
+
]
|
22 |
+
|
23 |
+
# Convert the list of dictionaries to a Pandas DataFrame
|
24 |
+
df = pd.DataFrame(data)
|
25 |
+
|
26 |
+
df["epoch"] = range(1, len(data)+1 )
|
27 |
+
|
28 |
+
st.markdown("### Cogni-BERT Best Model Train")
|
29 |
+
|
30 |
+
|
31 |
+
# st.dataframe(data)
|
32 |
+
|
33 |
+
|
34 |
+
col1, col2, col3 = st.columns(3)
|
35 |
+
|
36 |
+
# Line chart for validation loss with Seaborn
|
37 |
+
with col1:
|
38 |
+
st.markdown("#### Validation Loss")
|
39 |
+
fig, ax = plt.subplots()
|
40 |
+
sns.lineplot(x="epoch", y="val_loss", data=df, ax=ax, color='skyblue', marker='o', linestyle='-', linewidth=2, markersize=8)
|
41 |
+
plt.xlabel("epoch")
|
42 |
+
plt.ylabel("Validation Loss")
|
43 |
+
st.pyplot(fig)
|
44 |
+
|
45 |
+
# Line chart for training loss with Seaborn
|
46 |
+
with col2:
|
47 |
+
st.markdown("#### Training Loss")
|
48 |
+
fig, ax = plt.subplots()
|
49 |
+
sns.lineplot(x="epoch", y="train_loss", data=df, ax=ax, color='salmon', marker='s', linestyle='--', linewidth=2, markersize=8)
|
50 |
+
plt.xlabel("epoch")
|
51 |
+
plt.ylabel("Training Loss")
|
52 |
+
st.pyplot(fig)
|
53 |
+
|
54 |
+
# Line chart for F1 score with Seaborn
|
55 |
+
with col3:
|
56 |
+
st.markdown("#### Validation F1")
|
57 |
+
fig, ax = plt.subplots()
|
58 |
+
sns.lineplot(x="epoch", y="val_f1", data=df, ax=ax, color='limegreen', marker='D', linestyle='-.', linewidth=2, markersize=8)
|
59 |
+
plt.xlabel("epoch")
|
60 |
+
plt.ylabel("F1 Score")
|
61 |
+
st.pyplot(fig)
|
62 |
+
|
63 |
+
|
64 |
+
st.markdown('<p style="text-align:center;">Made with ❤️ by <a href="https://www.adarshmaurya.onionreads.com">Adarsh Maurya</a></p>', unsafe_allow_html=True)
|
65 |
+
|
66 |
+
|
67 |
if __name__ == "__main__":
|
68 |
main()
|
|
|
|