2nzi commited on
Commit
984ffe4
·
verified ·
1 Parent(s): ea5ee2f

first commit

Browse files
Dockerfile ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
+ # you will also find guides on how best to write your Dockerfile
3
+
4
+ FROM python:3.9
5
+
6
+ RUN useradd -m -u 1000 user
7
+ USER user
8
+ ENV PATH="/home/user/.local/bin:$PATH"
9
+
10
+ WORKDIR /app
11
+
12
+ COPY --chown=user ./requirements.txt requirements.txt
13
+ RUN pip install --no-cache-dir --upgrade -r requirements.txt
14
+
15
+ COPY --chown=user . /app
16
+ CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, UploadFile, File
2
+ import cv2
3
+ import torch
4
+ import pandas as pd
5
+ from PIL import Image
6
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
7
+ from tqdm import tqdm
8
+ import json
9
+ import shutil
10
+ from fastapi.middleware.cors import CORSMiddleware
11
+
12
+ app = FastAPI()
13
+
14
+ # Add CORS middleware to allow requests from localhost:8080 (or any origin you specify)
15
+ app.add_middleware(
16
+ CORSMiddleware,
17
+ allow_origins=["http://localhost:8080"], # Replace with the URL of your Vue.js app
18
+ allow_credentials=True,
19
+ allow_methods=["*"], # Allows all HTTP methods (GET, POST, etc.)
20
+ allow_headers=["*"], # Allows all headers (such as Content-Type, Authorization, etc.)
21
+ )
22
+
23
+ # Charger le processor et le modèle fine-tuné depuis le chemin local
24
+ local_model_path = r'.\vit-finetuned-ucf101'
25
+ processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
26
+ model = AutoModelForImageClassification.from_pretrained(local_model_path)
27
+ model.eval()
28
+
29
+ # Fonction pour classifier une image
30
+ def classifier_image(image):
31
+ image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
32
+ inputs = processor(images=image_pil, return_tensors="pt")
33
+ with torch.no_grad():
34
+ outputs = model(**inputs)
35
+ logits = outputs.logits
36
+ predicted_class_idx = logits.argmax(-1).item()
37
+ predicted_class = model.config.id2label[predicted_class_idx]
38
+ return predicted_class
39
+
40
+ # Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
41
+ def identifier_sequences_surfing(video_path, intervalle=0.5):
42
+ cap = cv2.VideoCapture(video_path)
43
+ frame_rate = cap.get(cv2.CAP_PROP_FPS)
44
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
45
+ frame_interval = int(frame_rate * intervalle)
46
+
47
+ resultats = []
48
+ sequences_surfing = []
49
+ frame_index = 0
50
+ in_surf_sequence = False
51
+ start_timestamp = None
52
+
53
+ with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
54
+ success, frame = cap.read()
55
+ while success:
56
+ if frame_index % frame_interval == 0:
57
+ timestamp = round(frame_index / frame_rate, 2) # Maintain precision to the centisecond level
58
+ classe = classifier_image(frame)
59
+ resultats.append({"Timestamp": timestamp, "Classe": classe})
60
+
61
+ if classe == "Surfing" and not in_surf_sequence:
62
+ in_surf_sequence = True
63
+ start_timestamp = timestamp
64
+
65
+ elif classe != "Surfing" and in_surf_sequence:
66
+ # Vérifier l'image suivante pour confirmer si c'était une erreur ponctuelle
67
+ success_next, frame_next = cap.read()
68
+ next_timestamp = round((frame_index + frame_interval) / frame_rate, 2)
69
+ classe_next = None
70
+
71
+ if success_next:
72
+ classe_next = classifier_image(frame_next)
73
+ resultats.append({"Timestamp": next_timestamp, "Classe": classe_next})
74
+
75
+ # Si l'image suivante est "Surfing", on ignore l'erreur ponctuelle
76
+ if classe_next == "Surfing":
77
+ success = success_next
78
+ frame = frame_next
79
+ frame_index += frame_interval
80
+ pbar.update(frame_interval)
81
+ continue
82
+ else:
83
+ # Sinon, terminer la séquence "Surfing"
84
+ in_surf_sequence = False
85
+ end_timestamp = timestamp
86
+ sequences_surfing.append((start_timestamp, end_timestamp))
87
+
88
+ success, frame = cap.read()
89
+ frame_index += 1
90
+ pbar.update(1)
91
+
92
+ # Si on est toujours dans une séquence "Surfing" à la fin de la vidéo
93
+ if in_surf_sequence:
94
+ sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))
95
+
96
+ cap.release()
97
+ dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
98
+ return dataframe_sequences
99
+
100
+ # Fonction pour convertir les séquences en format JSON
101
+ def convertir_sequences_en_json(dataframe):
102
+ events = []
103
+ blocks = []
104
+ for idx, row in dataframe.iterrows():
105
+ block = {
106
+ "id": f"Surfing{idx + 1}",
107
+ "start": round(row["Début"], 2),
108
+ "end": round(row["Fin"], 2)
109
+ }
110
+ blocks.append(block)
111
+ event = {
112
+ "event": "Surfing",
113
+ "blocks": blocks
114
+ }
115
+ events.append(event)
116
+ return events
117
+
118
+ @app.post("/analyze_video/")
119
+ async def analyze_video(file: UploadFile = File(...)):
120
+ with open("uploaded_video.mp4", "wb") as buffer:
121
+ shutil.copyfileobj(file.file, buffer)
122
+
123
+ dataframe_sequences = identifier_sequences_surfing("uploaded_video.mp4", intervalle=1)
124
+ json_result = convertir_sequences_en_json(dataframe_sequences)
125
+ return json_result
126
+
127
+ # Lancer l'application avec uvicorn (command line)
128
+ # uvicorn main:app --reload
129
+ # http://localhost:8000/docs#/
130
+ # (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ fastapi==0.115.0
2
+ uvicorn==0.31.0
3
+ torch==2.4.1
4
+ transformers==4.45.1
5
+ opencv-python==4.10.0.84
6
+ pandas==2.2.3
7
+ Pillow==10.4.0
8
+ tqdm==4.66.5
9
+ fastapi-cli==0.0.5
10
+ starlette==0.38.6
11
+ python-multipart==0.0.12
vit-finetuned-ucf101/README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
vit-finetuned-ucf101/config.json ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "ApplyEyeMakeup",
13
+ "1": "ApplyLipstick",
14
+ "2": "Archery",
15
+ "3": "BabyCrawling",
16
+ "4": "BalanceBeam",
17
+ "5": "BandMarching",
18
+ "6": "BaseballPitch",
19
+ "7": "Basketball",
20
+ "8": "BasketballDunk",
21
+ "9": "BenchPress",
22
+ "10": "Biking",
23
+ "11": "Billiards",
24
+ "12": "BlowDryHair",
25
+ "13": "BlowingCandles",
26
+ "14": "BodyWeightSquats",
27
+ "15": "Bowling",
28
+ "16": "BoxingPunchingBag",
29
+ "17": "BoxingSpeedBag",
30
+ "18": "BreastStroke",
31
+ "19": "BrushingTeeth",
32
+ "20": "CleanAndJerk",
33
+ "21": "CliffDiving",
34
+ "22": "CricketBowling",
35
+ "23": "CricketShot",
36
+ "24": "CuttingInKitchen",
37
+ "25": "Diving",
38
+ "26": "Drumming",
39
+ "27": "Fencing",
40
+ "28": "FieldHockeyPenalty",
41
+ "29": "FloorGymnastics",
42
+ "30": "FrisbeeCatch",
43
+ "31": "FrontCrawl",
44
+ "32": "GolfSwing",
45
+ "33": "Haircut",
46
+ "34": "Hammering",
47
+ "35": "HammerThrow",
48
+ "36": "HandstandPushups",
49
+ "37": "HandstandWalking",
50
+ "38": "HeadMassage",
51
+ "39": "HighJump",
52
+ "40": "HorseRace",
53
+ "41": "HorseRiding",
54
+ "42": "HulaHoop",
55
+ "43": "IceDancing",
56
+ "44": "JavelinThrow",
57
+ "45": "JugglingBalls",
58
+ "46": "JumpingJack",
59
+ "47": "JumpRope",
60
+ "48": "Kayaking",
61
+ "49": "Knitting",
62
+ "50": "LongJump",
63
+ "51": "Lunges",
64
+ "52": "MilitaryParade",
65
+ "53": "Mixing",
66
+ "54": "MoppingFloor",
67
+ "55": "Nunchucks",
68
+ "56": "ParallelBars",
69
+ "57": "PizzaTossing",
70
+ "58": "PlayingCello",
71
+ "59": "PlayingDaf",
72
+ "60": "PlayingDhol",
73
+ "61": "PlayingFlute",
74
+ "62": "PlayingGuitar",
75
+ "63": "PlayingPiano",
76
+ "64": "PlayingSitar",
77
+ "65": "PlayingTabla",
78
+ "66": "PlayingViolin",
79
+ "67": "PoleVault",
80
+ "68": "PommelHorse",
81
+ "69": "PullUps",
82
+ "70": "Punch",
83
+ "71": "PushUps",
84
+ "72": "Rafting",
85
+ "73": "RockClimbingIndoor",
86
+ "74": "RopeClimbing",
87
+ "75": "Rowing",
88
+ "76": "SalsaSpin",
89
+ "77": "ShavingBeard",
90
+ "78": "Shotput",
91
+ "79": "SkateBoarding",
92
+ "80": "Skiing",
93
+ "81": "Skijet",
94
+ "82": "SkyDiving",
95
+ "83": "SoccerJuggling",
96
+ "84": "SoccerPenalty",
97
+ "85": "StillRings",
98
+ "86": "SumoWrestling",
99
+ "87": "Surfing",
100
+ "88": "Swing",
101
+ "89": "TableTennisShot",
102
+ "90": "TaiChi",
103
+ "91": "TennisSwing",
104
+ "92": "ThrowDiscus",
105
+ "93": "TrampolineJumping",
106
+ "94": "Typing",
107
+ "95": "UnevenBars",
108
+ "96": "VolleyballSpiking",
109
+ "97": "WalkingWithDog",
110
+ "98": "WallPushups",
111
+ "99": "WritingOnBoard",
112
+ "100": "YoYo"
113
+ },
114
+ "image_size": 224,
115
+ "initializer_range": 0.02,
116
+ "intermediate_size": 3072,
117
+ "label2id": {
118
+ "LABEL_0": 0,
119
+ "LABEL_1": 1,
120
+ "LABEL_10": 10,
121
+ "LABEL_100": 100,
122
+ "LABEL_11": 11,
123
+ "LABEL_12": 12,
124
+ "LABEL_13": 13,
125
+ "LABEL_14": 14,
126
+ "LABEL_15": 15,
127
+ "LABEL_16": 16,
128
+ "LABEL_17": 17,
129
+ "LABEL_18": 18,
130
+ "LABEL_19": 19,
131
+ "LABEL_2": 2,
132
+ "LABEL_20": 20,
133
+ "LABEL_21": 21,
134
+ "LABEL_22": 22,
135
+ "LABEL_23": 23,
136
+ "LABEL_24": 24,
137
+ "LABEL_25": 25,
138
+ "LABEL_26": 26,
139
+ "LABEL_27": 27,
140
+ "LABEL_28": 28,
141
+ "LABEL_29": 29,
142
+ "LABEL_3": 3,
143
+ "LABEL_30": 30,
144
+ "LABEL_31": 31,
145
+ "LABEL_32": 32,
146
+ "LABEL_33": 33,
147
+ "LABEL_34": 34,
148
+ "LABEL_35": 35,
149
+ "LABEL_36": 36,
150
+ "LABEL_37": 37,
151
+ "LABEL_38": 38,
152
+ "LABEL_39": 39,
153
+ "LABEL_4": 4,
154
+ "LABEL_40": 40,
155
+ "LABEL_41": 41,
156
+ "LABEL_42": 42,
157
+ "LABEL_43": 43,
158
+ "LABEL_44": 44,
159
+ "LABEL_45": 45,
160
+ "LABEL_46": 46,
161
+ "LABEL_47": 47,
162
+ "LABEL_48": 48,
163
+ "LABEL_49": 49,
164
+ "LABEL_5": 5,
165
+ "LABEL_50": 50,
166
+ "LABEL_51": 51,
167
+ "LABEL_52": 52,
168
+ "LABEL_53": 53,
169
+ "LABEL_54": 54,
170
+ "LABEL_55": 55,
171
+ "LABEL_56": 56,
172
+ "LABEL_57": 57,
173
+ "LABEL_58": 58,
174
+ "LABEL_59": 59,
175
+ "LABEL_6": 6,
176
+ "LABEL_60": 60,
177
+ "LABEL_61": 61,
178
+ "LABEL_62": 62,
179
+ "LABEL_63": 63,
180
+ "LABEL_64": 64,
181
+ "LABEL_65": 65,
182
+ "LABEL_66": 66,
183
+ "LABEL_67": 67,
184
+ "LABEL_68": 68,
185
+ "LABEL_69": 69,
186
+ "LABEL_7": 7,
187
+ "LABEL_70": 70,
188
+ "LABEL_71": 71,
189
+ "LABEL_72": 72,
190
+ "LABEL_73": 73,
191
+ "LABEL_74": 74,
192
+ "LABEL_75": 75,
193
+ "LABEL_76": 76,
194
+ "LABEL_77": 77,
195
+ "LABEL_78": 78,
196
+ "LABEL_79": 79,
197
+ "LABEL_8": 8,
198
+ "LABEL_80": 80,
199
+ "LABEL_81": 81,
200
+ "LABEL_82": 82,
201
+ "LABEL_83": 83,
202
+ "LABEL_84": 84,
203
+ "LABEL_85": 85,
204
+ "LABEL_86": 86,
205
+ "LABEL_87": 87,
206
+ "LABEL_88": 88,
207
+ "LABEL_89": 89,
208
+ "LABEL_9": 9,
209
+ "LABEL_90": 90,
210
+ "LABEL_91": 91,
211
+ "LABEL_92": 92,
212
+ "LABEL_93": 93,
213
+ "LABEL_94": 94,
214
+ "LABEL_95": 95,
215
+ "LABEL_96": 96,
216
+ "LABEL_97": 97,
217
+ "LABEL_98": 98,
218
+ "LABEL_99": 99
219
+ },
220
+ "layer_norm_eps": 1e-12,
221
+ "model_type": "vit",
222
+ "num_attention_heads": 12,
223
+ "num_channels": 3,
224
+ "num_hidden_layers": 12,
225
+ "patch_size": 16,
226
+ "qkv_bias": true,
227
+ "torch_dtype": "float32",
228
+ "transformers_version": "4.45.1"
229
+ }
vit-finetuned-ucf101/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c69b3dbf5e36aa63c248131c95fd15fee40e8403ea8ee78e95bd33967041ff14
3
+ size 343528508