Spaces:
Sleeping
Sleeping
first commit
Browse files- Dockerfile +16 -0
- app.py +130 -0
- requirements.txt +11 -0
- vit-finetuned-ucf101/README.md +199 -0
- vit-finetuned-ucf101/config.json +229 -0
- vit-finetuned-ucf101/model.safetensors +3 -0
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
+
|
15 |
+
COPY --chown=user . /app
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
7 |
+
from tqdm import tqdm
|
8 |
+
import json
|
9 |
+
import shutil
|
10 |
+
from fastapi.middleware.cors import CORSMiddleware
|
11 |
+
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
# Add CORS middleware to allow requests from localhost:8080 (or any origin you specify)
|
15 |
+
app.add_middleware(
|
16 |
+
CORSMiddleware,
|
17 |
+
allow_origins=["http://localhost:8080"], # Replace with the URL of your Vue.js app
|
18 |
+
allow_credentials=True,
|
19 |
+
allow_methods=["*"], # Allows all HTTP methods (GET, POST, etc.)
|
20 |
+
allow_headers=["*"], # Allows all headers (such as Content-Type, Authorization, etc.)
|
21 |
+
)
|
22 |
+
|
23 |
+
# Charger le processor et le modèle fine-tuné depuis le chemin local
|
24 |
+
local_model_path = r'.\vit-finetuned-ucf101'
|
25 |
+
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
26 |
+
model = AutoModelForImageClassification.from_pretrained(local_model_path)
|
27 |
+
model.eval()
|
28 |
+
|
29 |
+
# Fonction pour classifier une image
|
30 |
+
def classifier_image(image):
|
31 |
+
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
32 |
+
inputs = processor(images=image_pil, return_tensors="pt")
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model(**inputs)
|
35 |
+
logits = outputs.logits
|
36 |
+
predicted_class_idx = logits.argmax(-1).item()
|
37 |
+
predicted_class = model.config.id2label[predicted_class_idx]
|
38 |
+
return predicted_class
|
39 |
+
|
40 |
+
# Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
|
41 |
+
def identifier_sequences_surfing(video_path, intervalle=0.5):
|
42 |
+
cap = cv2.VideoCapture(video_path)
|
43 |
+
frame_rate = cap.get(cv2.CAP_PROP_FPS)
|
44 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
45 |
+
frame_interval = int(frame_rate * intervalle)
|
46 |
+
|
47 |
+
resultats = []
|
48 |
+
sequences_surfing = []
|
49 |
+
frame_index = 0
|
50 |
+
in_surf_sequence = False
|
51 |
+
start_timestamp = None
|
52 |
+
|
53 |
+
with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
|
54 |
+
success, frame = cap.read()
|
55 |
+
while success:
|
56 |
+
if frame_index % frame_interval == 0:
|
57 |
+
timestamp = round(frame_index / frame_rate, 2) # Maintain precision to the centisecond level
|
58 |
+
classe = classifier_image(frame)
|
59 |
+
resultats.append({"Timestamp": timestamp, "Classe": classe})
|
60 |
+
|
61 |
+
if classe == "Surfing" and not in_surf_sequence:
|
62 |
+
in_surf_sequence = True
|
63 |
+
start_timestamp = timestamp
|
64 |
+
|
65 |
+
elif classe != "Surfing" and in_surf_sequence:
|
66 |
+
# Vérifier l'image suivante pour confirmer si c'était une erreur ponctuelle
|
67 |
+
success_next, frame_next = cap.read()
|
68 |
+
next_timestamp = round((frame_index + frame_interval) / frame_rate, 2)
|
69 |
+
classe_next = None
|
70 |
+
|
71 |
+
if success_next:
|
72 |
+
classe_next = classifier_image(frame_next)
|
73 |
+
resultats.append({"Timestamp": next_timestamp, "Classe": classe_next})
|
74 |
+
|
75 |
+
# Si l'image suivante est "Surfing", on ignore l'erreur ponctuelle
|
76 |
+
if classe_next == "Surfing":
|
77 |
+
success = success_next
|
78 |
+
frame = frame_next
|
79 |
+
frame_index += frame_interval
|
80 |
+
pbar.update(frame_interval)
|
81 |
+
continue
|
82 |
+
else:
|
83 |
+
# Sinon, terminer la séquence "Surfing"
|
84 |
+
in_surf_sequence = False
|
85 |
+
end_timestamp = timestamp
|
86 |
+
sequences_surfing.append((start_timestamp, end_timestamp))
|
87 |
+
|
88 |
+
success, frame = cap.read()
|
89 |
+
frame_index += 1
|
90 |
+
pbar.update(1)
|
91 |
+
|
92 |
+
# Si on est toujours dans une séquence "Surfing" à la fin de la vidéo
|
93 |
+
if in_surf_sequence:
|
94 |
+
sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))
|
95 |
+
|
96 |
+
cap.release()
|
97 |
+
dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
|
98 |
+
return dataframe_sequences
|
99 |
+
|
100 |
+
# Fonction pour convertir les séquences en format JSON
|
101 |
+
def convertir_sequences_en_json(dataframe):
|
102 |
+
events = []
|
103 |
+
blocks = []
|
104 |
+
for idx, row in dataframe.iterrows():
|
105 |
+
block = {
|
106 |
+
"id": f"Surfing{idx + 1}",
|
107 |
+
"start": round(row["Début"], 2),
|
108 |
+
"end": round(row["Fin"], 2)
|
109 |
+
}
|
110 |
+
blocks.append(block)
|
111 |
+
event = {
|
112 |
+
"event": "Surfing",
|
113 |
+
"blocks": blocks
|
114 |
+
}
|
115 |
+
events.append(event)
|
116 |
+
return events
|
117 |
+
|
118 |
+
@app.post("/analyze_video/")
|
119 |
+
async def analyze_video(file: UploadFile = File(...)):
|
120 |
+
with open("uploaded_video.mp4", "wb") as buffer:
|
121 |
+
shutil.copyfileobj(file.file, buffer)
|
122 |
+
|
123 |
+
dataframe_sequences = identifier_sequences_surfing("uploaded_video.mp4", intervalle=1)
|
124 |
+
json_result = convertir_sequences_en_json(dataframe_sequences)
|
125 |
+
return json_result
|
126 |
+
|
127 |
+
# Lancer l'application avec uvicorn (command line)
|
128 |
+
# uvicorn main:app --reload
|
129 |
+
# http://localhost:8000/docs#/
|
130 |
+
# (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.115.0
|
2 |
+
uvicorn==0.31.0
|
3 |
+
torch==2.4.1
|
4 |
+
transformers==4.45.1
|
5 |
+
opencv-python==4.10.0.84
|
6 |
+
pandas==2.2.3
|
7 |
+
Pillow==10.4.0
|
8 |
+
tqdm==4.66.5
|
9 |
+
fastapi-cli==0.0.5
|
10 |
+
starlette==0.38.6
|
11 |
+
python-multipart==0.0.12
|
vit-finetuned-ucf101/README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
vit-finetuned-ucf101/config.json
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/vit-base-patch16-224",
|
3 |
+
"architectures": [
|
4 |
+
"ViTForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"encoder_stride": 16,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.0,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "ApplyEyeMakeup",
|
13 |
+
"1": "ApplyLipstick",
|
14 |
+
"2": "Archery",
|
15 |
+
"3": "BabyCrawling",
|
16 |
+
"4": "BalanceBeam",
|
17 |
+
"5": "BandMarching",
|
18 |
+
"6": "BaseballPitch",
|
19 |
+
"7": "Basketball",
|
20 |
+
"8": "BasketballDunk",
|
21 |
+
"9": "BenchPress",
|
22 |
+
"10": "Biking",
|
23 |
+
"11": "Billiards",
|
24 |
+
"12": "BlowDryHair",
|
25 |
+
"13": "BlowingCandles",
|
26 |
+
"14": "BodyWeightSquats",
|
27 |
+
"15": "Bowling",
|
28 |
+
"16": "BoxingPunchingBag",
|
29 |
+
"17": "BoxingSpeedBag",
|
30 |
+
"18": "BreastStroke",
|
31 |
+
"19": "BrushingTeeth",
|
32 |
+
"20": "CleanAndJerk",
|
33 |
+
"21": "CliffDiving",
|
34 |
+
"22": "CricketBowling",
|
35 |
+
"23": "CricketShot",
|
36 |
+
"24": "CuttingInKitchen",
|
37 |
+
"25": "Diving",
|
38 |
+
"26": "Drumming",
|
39 |
+
"27": "Fencing",
|
40 |
+
"28": "FieldHockeyPenalty",
|
41 |
+
"29": "FloorGymnastics",
|
42 |
+
"30": "FrisbeeCatch",
|
43 |
+
"31": "FrontCrawl",
|
44 |
+
"32": "GolfSwing",
|
45 |
+
"33": "Haircut",
|
46 |
+
"34": "Hammering",
|
47 |
+
"35": "HammerThrow",
|
48 |
+
"36": "HandstandPushups",
|
49 |
+
"37": "HandstandWalking",
|
50 |
+
"38": "HeadMassage",
|
51 |
+
"39": "HighJump",
|
52 |
+
"40": "HorseRace",
|
53 |
+
"41": "HorseRiding",
|
54 |
+
"42": "HulaHoop",
|
55 |
+
"43": "IceDancing",
|
56 |
+
"44": "JavelinThrow",
|
57 |
+
"45": "JugglingBalls",
|
58 |
+
"46": "JumpingJack",
|
59 |
+
"47": "JumpRope",
|
60 |
+
"48": "Kayaking",
|
61 |
+
"49": "Knitting",
|
62 |
+
"50": "LongJump",
|
63 |
+
"51": "Lunges",
|
64 |
+
"52": "MilitaryParade",
|
65 |
+
"53": "Mixing",
|
66 |
+
"54": "MoppingFloor",
|
67 |
+
"55": "Nunchucks",
|
68 |
+
"56": "ParallelBars",
|
69 |
+
"57": "PizzaTossing",
|
70 |
+
"58": "PlayingCello",
|
71 |
+
"59": "PlayingDaf",
|
72 |
+
"60": "PlayingDhol",
|
73 |
+
"61": "PlayingFlute",
|
74 |
+
"62": "PlayingGuitar",
|
75 |
+
"63": "PlayingPiano",
|
76 |
+
"64": "PlayingSitar",
|
77 |
+
"65": "PlayingTabla",
|
78 |
+
"66": "PlayingViolin",
|
79 |
+
"67": "PoleVault",
|
80 |
+
"68": "PommelHorse",
|
81 |
+
"69": "PullUps",
|
82 |
+
"70": "Punch",
|
83 |
+
"71": "PushUps",
|
84 |
+
"72": "Rafting",
|
85 |
+
"73": "RockClimbingIndoor",
|
86 |
+
"74": "RopeClimbing",
|
87 |
+
"75": "Rowing",
|
88 |
+
"76": "SalsaSpin",
|
89 |
+
"77": "ShavingBeard",
|
90 |
+
"78": "Shotput",
|
91 |
+
"79": "SkateBoarding",
|
92 |
+
"80": "Skiing",
|
93 |
+
"81": "Skijet",
|
94 |
+
"82": "SkyDiving",
|
95 |
+
"83": "SoccerJuggling",
|
96 |
+
"84": "SoccerPenalty",
|
97 |
+
"85": "StillRings",
|
98 |
+
"86": "SumoWrestling",
|
99 |
+
"87": "Surfing",
|
100 |
+
"88": "Swing",
|
101 |
+
"89": "TableTennisShot",
|
102 |
+
"90": "TaiChi",
|
103 |
+
"91": "TennisSwing",
|
104 |
+
"92": "ThrowDiscus",
|
105 |
+
"93": "TrampolineJumping",
|
106 |
+
"94": "Typing",
|
107 |
+
"95": "UnevenBars",
|
108 |
+
"96": "VolleyballSpiking",
|
109 |
+
"97": "WalkingWithDog",
|
110 |
+
"98": "WallPushups",
|
111 |
+
"99": "WritingOnBoard",
|
112 |
+
"100": "YoYo"
|
113 |
+
},
|
114 |
+
"image_size": 224,
|
115 |
+
"initializer_range": 0.02,
|
116 |
+
"intermediate_size": 3072,
|
117 |
+
"label2id": {
|
118 |
+
"LABEL_0": 0,
|
119 |
+
"LABEL_1": 1,
|
120 |
+
"LABEL_10": 10,
|
121 |
+
"LABEL_100": 100,
|
122 |
+
"LABEL_11": 11,
|
123 |
+
"LABEL_12": 12,
|
124 |
+
"LABEL_13": 13,
|
125 |
+
"LABEL_14": 14,
|
126 |
+
"LABEL_15": 15,
|
127 |
+
"LABEL_16": 16,
|
128 |
+
"LABEL_17": 17,
|
129 |
+
"LABEL_18": 18,
|
130 |
+
"LABEL_19": 19,
|
131 |
+
"LABEL_2": 2,
|
132 |
+
"LABEL_20": 20,
|
133 |
+
"LABEL_21": 21,
|
134 |
+
"LABEL_22": 22,
|
135 |
+
"LABEL_23": 23,
|
136 |
+
"LABEL_24": 24,
|
137 |
+
"LABEL_25": 25,
|
138 |
+
"LABEL_26": 26,
|
139 |
+
"LABEL_27": 27,
|
140 |
+
"LABEL_28": 28,
|
141 |
+
"LABEL_29": 29,
|
142 |
+
"LABEL_3": 3,
|
143 |
+
"LABEL_30": 30,
|
144 |
+
"LABEL_31": 31,
|
145 |
+
"LABEL_32": 32,
|
146 |
+
"LABEL_33": 33,
|
147 |
+
"LABEL_34": 34,
|
148 |
+
"LABEL_35": 35,
|
149 |
+
"LABEL_36": 36,
|
150 |
+
"LABEL_37": 37,
|
151 |
+
"LABEL_38": 38,
|
152 |
+
"LABEL_39": 39,
|
153 |
+
"LABEL_4": 4,
|
154 |
+
"LABEL_40": 40,
|
155 |
+
"LABEL_41": 41,
|
156 |
+
"LABEL_42": 42,
|
157 |
+
"LABEL_43": 43,
|
158 |
+
"LABEL_44": 44,
|
159 |
+
"LABEL_45": 45,
|
160 |
+
"LABEL_46": 46,
|
161 |
+
"LABEL_47": 47,
|
162 |
+
"LABEL_48": 48,
|
163 |
+
"LABEL_49": 49,
|
164 |
+
"LABEL_5": 5,
|
165 |
+
"LABEL_50": 50,
|
166 |
+
"LABEL_51": 51,
|
167 |
+
"LABEL_52": 52,
|
168 |
+
"LABEL_53": 53,
|
169 |
+
"LABEL_54": 54,
|
170 |
+
"LABEL_55": 55,
|
171 |
+
"LABEL_56": 56,
|
172 |
+
"LABEL_57": 57,
|
173 |
+
"LABEL_58": 58,
|
174 |
+
"LABEL_59": 59,
|
175 |
+
"LABEL_6": 6,
|
176 |
+
"LABEL_60": 60,
|
177 |
+
"LABEL_61": 61,
|
178 |
+
"LABEL_62": 62,
|
179 |
+
"LABEL_63": 63,
|
180 |
+
"LABEL_64": 64,
|
181 |
+
"LABEL_65": 65,
|
182 |
+
"LABEL_66": 66,
|
183 |
+
"LABEL_67": 67,
|
184 |
+
"LABEL_68": 68,
|
185 |
+
"LABEL_69": 69,
|
186 |
+
"LABEL_7": 7,
|
187 |
+
"LABEL_70": 70,
|
188 |
+
"LABEL_71": 71,
|
189 |
+
"LABEL_72": 72,
|
190 |
+
"LABEL_73": 73,
|
191 |
+
"LABEL_74": 74,
|
192 |
+
"LABEL_75": 75,
|
193 |
+
"LABEL_76": 76,
|
194 |
+
"LABEL_77": 77,
|
195 |
+
"LABEL_78": 78,
|
196 |
+
"LABEL_79": 79,
|
197 |
+
"LABEL_8": 8,
|
198 |
+
"LABEL_80": 80,
|
199 |
+
"LABEL_81": 81,
|
200 |
+
"LABEL_82": 82,
|
201 |
+
"LABEL_83": 83,
|
202 |
+
"LABEL_84": 84,
|
203 |
+
"LABEL_85": 85,
|
204 |
+
"LABEL_86": 86,
|
205 |
+
"LABEL_87": 87,
|
206 |
+
"LABEL_88": 88,
|
207 |
+
"LABEL_89": 89,
|
208 |
+
"LABEL_9": 9,
|
209 |
+
"LABEL_90": 90,
|
210 |
+
"LABEL_91": 91,
|
211 |
+
"LABEL_92": 92,
|
212 |
+
"LABEL_93": 93,
|
213 |
+
"LABEL_94": 94,
|
214 |
+
"LABEL_95": 95,
|
215 |
+
"LABEL_96": 96,
|
216 |
+
"LABEL_97": 97,
|
217 |
+
"LABEL_98": 98,
|
218 |
+
"LABEL_99": 99
|
219 |
+
},
|
220 |
+
"layer_norm_eps": 1e-12,
|
221 |
+
"model_type": "vit",
|
222 |
+
"num_attention_heads": 12,
|
223 |
+
"num_channels": 3,
|
224 |
+
"num_hidden_layers": 12,
|
225 |
+
"patch_size": 16,
|
226 |
+
"qkv_bias": true,
|
227 |
+
"torch_dtype": "float32",
|
228 |
+
"transformers_version": "4.45.1"
|
229 |
+
}
|
vit-finetuned-ucf101/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c69b3dbf5e36aa63c248131c95fd15fee40e8403ea8ee78e95bd33967041ff14
|
3 |
+
size 343528508
|