2nzi's picture
Update app.py
28726ff verified
raw
history blame
20.8 kB
# from fastapi import FastAPI, UploadFile, File, HTTPException
# import cv2
# import torch
# import pandas as pd
# from PIL import Image
# from transformers import AutoImageProcessor, AutoModelForImageClassification
# from tqdm import tqdm
# import shutil
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.responses import HTMLResponse
# from huggingface_hub import HfApi
# import os
# from dotenv import load_dotenv
# from typing import Optional
# # Charger les variables d'environnement, y compris la clé API Hugging Face
# load_dotenv()
# api_key = os.getenv("HUGGINGFACE_API_KEY")
# if not api_key:
# raise ValueError("La clé API Hugging Face n'est pas définie dans le fichier .env.")
# # Initialiser l'API Hugging Face
# hf_api = HfApi()
# app = FastAPI()
# # Add CORS middleware to allow requests from Vue.js frontend
# app.add_middleware(
# CORSMiddleware,
# allow_origins=[
# "http://localhost:8080",
# "https://labeling2-163849140747.europe-west9.run.app/",
# "https://my-vue-app-latest-qqzd.onrender.com/",
# ],
# allow_credentials=True,
# allow_methods=["*"], # Permet toutes les méthodes HTTP (GET, POST, etc.)
# allow_headers=["*"], # Permet tous les en-têtes (Content-Type, Authorization, etc.)
# )
# # Charger le processeur d'image et le modèle fine-tuné localement
# local_model_path = r'./vit-finetuned-ucf101'
# processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
# model = AutoModelForImageClassification.from_pretrained(local_model_path)
# model.eval()
# # Fonction pour classifier une image
# def classifier_image(image):
# image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# inputs = processor(images=image_pil, return_tensors="pt")
# with torch.no_grad():
# outputs = model(**inputs)
# logits = outputs.logits
# predicted_class_idx = logits.argmax(-1).item()
# predicted_class = model.config.id2label[predicted_class_idx]
# return predicted_class
# # Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
# def identifier_sequences_surfing(video_path, intervalle=0.5):
# cap = cv2.VideoCapture(video_path)
# frame_rate = cap.get(cv2.CAP_PROP_FPS)
# total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# frame_interval = int(frame_rate * intervalle)
# sequences_surfing = []
# frame_index = 0
# in_surf_sequence = False
# start_timestamp = None
# with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
# success, frame = cap.read()
# while success:
# if frame_index % frame_interval == 0:
# timestamp = round(frame_index / frame_rate, 2)
# classe = classifier_image(frame)
# if classe == "Surfing" and not in_surf_sequence:
# in_surf_sequence = True
# start_timestamp = timestamp
# elif classe != "Surfing" and in_surf_sequence:
# in_surf_sequence = False
# end_timestamp = timestamp
# sequences_surfing.append((start_timestamp, end_timestamp))
# success, frame = cap.read()
# frame_index += 1
# pbar.update(1)
# if in_surf_sequence:
# sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))
# cap.release()
# dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
# return dataframe_sequences
# # Fonction pour convertir les séquences en format JSON
# def convertir_sequences_en_json(dataframe):
# events = []
# blocks = []
# for idx, row in dataframe.iterrows():
# block = {
# "id": f"Surfing{idx + 1}",
# "start": round(row["Début"], 2),
# "end": round(row["Fin"], 2)
# }
# blocks.append(block)
# event = {
# "event": "Surfing",
# "blocks": blocks
# }
# events.append(event)
# return events
# # # Endpoint pour analyser la vidéo et uploader sur Hugging Face
# # @app.post("/analyze_video/")
# # async def analyze_video(user_name: str, file: UploadFile = File(...)):
# # try:
# # # Sauvegarder la vidéo temporairement
# # temp_file_path = f"/tmp/{file.filename}"
# # with open(temp_file_path, "wb") as buffer:
# # shutil.copyfileobj(file.file, buffer)
# # # Uploader la vidéo sur Hugging Face Hub
# # dataset_name = "2nzi/Video-Sequence-Labeling"
# # target_path_in_repo = f"{user_name}/raw/{file.filename}"
# # hf_api.upload_file(
# # path_or_fileobj=temp_file_path,
# # path_in_repo=target_path_in_repo,
# # repo_id=dataset_name,
# # repo_type="dataset",
# # token=api_key
# # )
# # # Analyser la vidéo pour trouver des séquences "Surfing"
# # dataframe_sequences = identifier_sequences_surfing(temp_file_path, intervalle=1)
# # json_result = convertir_sequences_en_json(dataframe_sequences)
# # # Supprimer le fichier temporaire après l'upload
# # os.remove(temp_file_path)
# # return {"message": "Video uploaded and analyzed successfully!",
# # "file_url": f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}",
# # "analysis": json_result}
# # except Exception as e:
# # raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: Optional[UploadFile] = File(None), video_url: Optional[str] = None):
# try:
# # Vérifier si la vidéo est fournie sous forme de fichier ou d'URL
# if file:
# # Sauvegarder la vidéo temporairement
# temp_file_path = f"/tmp/{file.filename}"
# with open(temp_file_path, "wb") as buffer:
# shutil.copyfileobj(file.file, buffer)
# # Uploader la vidéo sur Hugging Face Hub
# dataset_name = "2nzi/Video-Sequence-Labeling"
# target_path_in_repo = f"{user_name}/raw/{file.filename}"
# hf_api.upload_file(
# path_or_fileobj=temp_file_path,
# path_in_repo=target_path_in_repo,
# repo_id=dataset_name,
# repo_type="dataset",
# token=os.getenv("HUGGINGFACE_WRITE_API_KEY")
# )
# # URL de la vidéo sur Hugging Face
# video_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}"
# # Supprimer le fichier temporaire après l'upload
# os.remove(temp_file_path)
# # Assurez-vous d'avoir une URL valide à ce stade
# if not video_url:
# raise HTTPException(status_code=400, detail="No valid video URL or file provided.")
# # Analyser la vidéo via l'URL
# dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# return {
# "message": "Video uploaded and analyzed successfully!",
# "file_url": video_url,
# "analysis": json_result
# }
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")
# # Fonction pour uploader une vidéo vers un dataset Hugging Face
# def upload_to_hf_dataset(user_name: str, video_path: str):
# dataset_name = "2nzi/Video-Sequence-Labeling"
# repo_path = f"{user_name}/raw/{os.path.basename(video_path)}"
# try:
# hf_api.upload_file(
# path_or_fileobj=video_path,
# path_in_repo=repo_path,
# repo_id=dataset_name,
# repo_type="dataset",
# token=api_key
# )
# # Retourner l'URL de la vidéo après l'upload
# url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
# return {"status": "success", "url": url}
# except Exception as e:
# return {"status": "error", "message": str(e)}
# @app.get("/", response_class=HTMLResponse)
# async def index():
# return (
# """
# <html>
# <body>
# <h1>Hello world!</h1>
# <p>This `/` is the most simple and default endpoint.</p>
# <p>If you want to learn more, check out the documentation of the API at
# <a href='/docs'>/docs</a> or
# <a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
# </p>
# </body>
# </html>
# """
# )
# # Lancer l'application avec uvicorn (command line)
# # uvicorn main:app --reload
# # http://localhost:8000/docs#/
# # (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1
from fastapi import FastAPI, UploadFile, File, HTTPException
import cv2
import torch
import pandas as pd
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
from tqdm import tqdm
import shutil
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import HTMLResponse
from huggingface_hub import HfApi
import os
from dotenv import load_dotenv
from typing import Optional
# Charger les variables d'environnement, y compris la clé API Hugging Face
load_dotenv()
api_key = os.getenv("HUGGINGFACE_API_KEY")
if not api_key:
raise ValueError("La clé API Hugging Face n'est pas définie dans le fichier .env.")
# Initialiser l'API Hugging Face
hf_api = HfApi()
app = FastAPI()
# Add CORS middleware to allow requests from Vue.js frontend
app.add_middleware(
CORSMiddleware,
allow_origins=[
"http://localhost:8080",
"https://labeling2-163849140747.europe-west9.run.app/",
"https://my-vue-app-latest-qqzd.onrender.com/",
],
allow_credentials=True,
allow_methods=["*"], # Permet toutes les méthodes HTTP (GET, POST, etc.)
allow_headers=["*"], # Permet tous les en-têtes (Content-Type, Authorization, etc.)
)
# Charger le processeur d'image et le modèle fine-tuné localement
local_model_path = r'./vit-finetuned-ucf101'
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained(local_model_path)
model.eval()
# Fonction pour classifier une image
def classifier_image(image):
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
inputs = processor(images=image_pil, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
predicted_class = model.config.id2label[predicted_class_idx]
return predicted_class
# Fonction pour traiter la vidéo et identifier les séquences de "Surfing"
def identifier_sequences_surfing(video_path, intervalle=0.5):
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_interval = int(frame_rate * intervalle)
sequences_surfing = []
frame_index = 0
in_surf_sequence = False
start_timestamp = None
with tqdm(total=total_frames, desc="Traitement des frames de la vidéo", unit="frame") as pbar:
success, frame = cap.read()
while success:
if frame_index % frame_interval == 0:
timestamp = round(frame_index / frame_rate, 2)
classe = classifier_image(frame)
if classe == "Surfing" and not in_surf_sequence:
in_surf_sequence = True
start_timestamp = timestamp
elif classe != "Surfing" and in_surf_sequence:
in_surf_sequence = False
end_timestamp = timestamp
sequences_surfing.append((start_timestamp, end_timestamp))
success, frame = cap.read()
frame_index += 1
pbar.update(1)
if in_surf_sequence:
sequences_surfing.append((start_timestamp, round(frame_index / frame_rate, 2)))
cap.release()
dataframe_sequences = pd.DataFrame(sequences_surfing, columns=["Début", "Fin"])
return dataframe_sequences
# Fonction pour convertir les séquences en format JSON
def convertir_sequences_en_json(dataframe):
events = []
blocks = []
for idx, row in dataframe.iterrows():
block = {
"id": f"Surfing{idx + 1}",
"start": round(row["Début"], 2),
"end": round(row["Fin"], 2)
}
blocks.append(block)
event = {
"event": "Surfing",
"blocks": blocks
}
events.append(event)
return events
# # Endpoint pour analyser la vidéo et uploader sur Hugging Face
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: UploadFile = File(...)):
# try:
# # Sauvegarder la vidéo temporairement
# temp_file_path = f"/tmp/{file.filename}"
# with open(temp_file_path, "wb") as buffer:
# shutil.copyfileobj(file.file, buffer)
# # Uploader la vidéo sur Hugging Face Hub
# dataset_name = "2nzi/Video-Sequence-Labeling"
# target_path_in_repo = f"{user_name}/raw/{file.filename}"
# hf_api.upload_file(
# path_or_fileobj=temp_file_path,
# path_in_repo=target_path_in_repo,
# repo_id=dataset_name,
# repo_type="dataset",
# token=api_key
# )
# # Analyser la vidéo pour trouver des séquences "Surfing"
# dataframe_sequences = identifier_sequences_surfing(temp_file_path, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# # Supprimer le fichier temporaire après l'upload
# os.remove(temp_file_path)
# return {"message": "Video uploaded and analyzed successfully!",
# "file_url": f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}",
# "analysis": json_result}
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, file: Optional[UploadFile] = File(None), video_url: Optional[str] = None):
# try:
# # Vérifier si la vidéo est fournie sous forme de fichier ou d'URL
# if file:
# # Sauvegarder la vidéo temporairement
# temp_file_path = f"/tmp/{file.filename}"
# with open(temp_file_path, "wb") as buffer:
# shutil.copyfileobj(file.file, buffer)
# # Uploader la vidéo sur Hugging Face Hub
# dataset_name = "2nzi/Video-Sequence-Labeling"
# target_path_in_repo = f"{user_name}/raw/{file.filename}"
# hf_api.upload_file(
# path_or_fileobj=temp_file_path,
# path_in_repo=target_path_in_repo,
# repo_id=dataset_name,
# repo_type="dataset",
# token=os.getenv("HUGGINGFACE_WRITE_API_KEY")
# )
# # URL de la vidéo sur Hugging Face
# video_url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{target_path_in_repo}"
# # Supprimer le fichier temporaire après l'upload
# os.remove(temp_file_path)
# # Assurez-vous d'avoir une URL valide à ce stade
# if not video_url:
# raise HTTPException(status_code=400, detail="No valid video URL or file provided.")
# # Analyser la vidéo via l'URL
# dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# return {
# "message": "Video uploaded and analyzed successfully!",
# "file_url": video_url,
# "analysis": json_result
# }
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Failed to upload or analyze video: {str(e)}")
# # Endpoint pour analyser la vidéo via une URL
# @app.post("/analyze_video/")
# async def analyze_video(user_name: str, video_url: Optional[str] = None):
# try:
# # Assurez-vous d'avoir une URL valide à ce stade
# if not video_url:
# raise HTTPException(status_code=400, detail="No valid video URL provided.")
# # Analyser la vidéo via l'URL
# dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
# json_result = convertir_sequences_en_json(dataframe_sequences)
# return {
# "message": "Video analyzed successfully!",
# "file_url": video_url,
# "analysis": json_result
# }
# except Exception as e:
# raise HTTPException(status_code=500, detail=f"Failed to analyze video: {str(e)}")
@app.post("/analyze_video/")
async def analyze_video(user_name: str, video_url: Optional[str] = None):
try:
# Log for debugging purposes
print(f"Received user_name: {user_name}")
print(f"Received video_url: {video_url}")
# Assurez-vous d'avoir une URL valide à ce stade
if not video_url:
raise HTTPException(status_code=400, detail="No valid video URL provided.")
# Analyser la vidéo via l'URL
dataframe_sequences = identifier_sequences_surfing(video_url, intervalle=1)
json_result = convertir_sequences_en_json(dataframe_sequences)
return {
"message": "Video analyzed successfully!",
"file_url": video_url,
"analysis": json_result
}
except Exception as e:
print(f"Error during video analysis: {str(e)}") # Log the error
raise HTTPException(status_code=500, detail=f"Failed to analyze video: {str(e)}")
# Fonction pour uploader une vidéo vers un dataset Hugging Face
def upload_to_hf_dataset(user_name: str, video_path: str):
dataset_name = "2nzi/Video-Sequence-Labeling"
repo_path = f"{user_name}/raw/{os.path.basename(video_path)}"
try:
hf_api.upload_file(
path_or_fileobj=video_path,
path_in_repo=repo_path,
repo_id=dataset_name,
repo_type="dataset",
token=api_key
)
# Retourner l'URL de la vidéo après l'upload
url = f"https://huggingface.co/datasets/{dataset_name}/resolve/main/{repo_path}"
return {"status": "success", "url": url}
except Exception as e:
return {"status": "error", "message": str(e)}
@app.get("/", response_class=HTMLResponse)
async def index():
return (
"""
<html>
<body>
<h1>Hello world!</h1>
<p>This `/` is the most simple and default endpoint.</p>
<p>If you want to learn more, check out the documentation of the API at
<a href='/docs'>/docs</a> or
<a href='https://2nzi-video-sequence-labeling.hf.space/docs' target='_blank'>external docs</a>.
</p>
</body>
</html>
"""
)
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@app.post("/test_connection/")
async def test_connection(user_name: str):
try:
# Log for debugging purposes
logger.info(f"Received user_name: {user_name}")
print(f"Received user_name: {user_name}")
# Simple response for testing purposes
response_message = f"Hello, {user_name}! The backend is reachable and working correctly."
# Log the response message
logger.info(f"Returning response: {response_message}")
print(f"Returning response: {response_message}")
return {
"message": response_message
}
except Exception as e:
logger.error(f"Error during test connection: {str(e)}")
print(f"Error during test connection: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to connect: {str(e)}")
# Lancer l'application avec uvicorn (command line)
# uvicorn main:app --reload
# http://localhost:8000/docs#/
# (.venv) PS C:\Users\antoi\Documents\Work_Learn\Labeling-Deploy\FastAPI> uvicorn main:app --host 0.0.0.0 --port 8000 --workers 1