GetAroundAPI / main.py
2nzi's picture
update main
15a293c
raw
history blame
3.02 kB
import uvicorn
import pandas as pd
from pydantic import BaseModel
from typing import List, Union
from fastapi import FastAPI
import joblib
from enum import Enum
from fastapi.responses import HTMLResponse
description = """
Welcome to the GetAround Car Value Prediction API. This app provides an endpoint to predict car values based on various features! Try it out 🕹️
## Machine Learning
This section includes a Machine Learning endpoint that predicts car values based on various features. Here is the endpoint:
* `/predict`: **POST** request that accepts a list of car features and returns a predicted car value.
Check out the documentation below 👇 for more information on each endpoint.
"""
tags_metadata = [
{
"name": "Machine Learning",
"description": "Endpoint for predicting car values based on provided features."
}
]
app = FastAPI(
title="🚗 GetAround Car Value Prediction API",
description=description,
version="0.1",
contact={
"name": "Antoine VERDON",
"email": "[email protected]",
},
openapi_tags=tags_metadata
)
class CarBrand(str, Enum):
citroen = "Citroën"
peugeot = "Peugeot"
pgo = "PGO"
renault = "Renault"
audi = "Audi"
bmw = "BMW"
other = "other"
mercedes = "Mercedes"
opel = "Opel"
volkswagen = "Volkswagen"
ferrari = "Ferrari"
maserati = "Maserati"
mitsubishi = "Mitsubishi"
nissan = "Nissan"
seat = "SEAT"
subaru = "Subaru"
toyota = "Toyota"
class PredictionFeatures(BaseModel):
brand: CarBrand
mileage: int
engine_power: int
fuel: str
paint_color: str
car_type: str
private_parking_available: bool
has_gps: bool
has_air_conditioning: bool
automatic_car: bool
has_getaround_connect: bool
has_speed_regulator: bool
winter_tires: bool
@app.get("/", response_class=HTMLResponse, tags=["Introduction Endpoints"])
async def index():
return (
"Hello world! This `/` is the most simple and default endpoint. "
"If you want to learn more, check out documentation of the API at "
"<a href='/docs'>/docs</a> or "
"<a href='https://2nzi-getaroundapi.hf.space/docs' target='_blank'>external docs</a>."
)
@app.post("/predict", tags=["Machine Learning"])
async def predict(predictionFeatures: PredictionFeatures):
columns = [
'brand', 'mileage', 'engine_power', 'fuel', 'paint_color',
'car_type', 'private_parking_available', 'has_gps',
'has_air_conditioning', 'automatic_car', 'has_getaround_connect',
'has_speed_regulator', 'winter_tires'
]
car_data_dict = {col: [getattr(predictionFeatures, col)] for col in columns}
car_data = pd.DataFrame(car_data_dict)
model = joblib.load('best_model_XGBoost.pkl')
prediction = model.predict(car_data)
response = {"prediction": prediction.tolist()[0]}
return response
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=4000)