# Modified from ``https://github.com/openai/CLIP'' and ``https://github.com/mlfoundations/open_clip'' # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import logging import math import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as T from .attention import flash_attention from .tokenizers import HuggingfaceTokenizer from .xlm_roberta import XLMRoberta __all__ = [ 'XLMRobertaCLIP', 'clip_xlm_roberta_vit_h_14', 'CLIPModel', ] def pos_interpolate(pos, seq_len): if pos.size(1) == seq_len: return pos else: src_grid = int(math.sqrt(pos.size(1))) tar_grid = int(math.sqrt(seq_len)) n = pos.size(1) - src_grid * src_grid return torch.cat([ pos[:, :n], F.interpolate( pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute( 0, 3, 1, 2), size=(tar_grid, tar_grid), mode='bicubic', align_corners=False).flatten(2).transpose(1, 2) ], dim=1) class QuickGELU(nn.Module): def forward(self, x): return x * torch.sigmoid(1.702 * x) class LayerNorm(nn.LayerNorm): def forward(self, x): return super().forward(x.float()).type_as(x) class SelfAttention(nn.Module): def __init__(self, dim, num_heads, causal=False, attn_dropout=0.0, proj_dropout=0.0): assert dim % num_heads == 0 super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.causal = causal self.attn_dropout = attn_dropout self.proj_dropout = proj_dropout # layers self.to_qkv = nn.Linear(dim, dim * 3) self.proj = nn.Linear(dim, dim) def forward(self, x): """ x: [B, L, C]. """ b, s, c, n, d = *x.size(), self.num_heads, self.head_dim # compute query, key, value q, k, v = self.to_qkv(x).view(b, s, 3, n, d).unbind(2) # compute attention p = self.attn_dropout if self.training else 0.0 x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2) x = x.reshape(b, s, c) # output x = self.proj(x) x = F.dropout(x, self.proj_dropout, self.training) return x class SwiGLU(nn.Module): def __init__(self, dim, mid_dim): super().__init__() self.dim = dim self.mid_dim = mid_dim # layers self.fc1 = nn.Linear(dim, mid_dim) self.fc2 = nn.Linear(dim, mid_dim) self.fc3 = nn.Linear(mid_dim, dim) def forward(self, x): x = F.silu(self.fc1(x)) * self.fc2(x) x = self.fc3(x) return x class AttentionBlock(nn.Module): def __init__(self, dim, mlp_ratio, num_heads, post_norm=False, causal=False, activation='quick_gelu', attn_dropout=0.0, proj_dropout=0.0, norm_eps=1e-5): assert activation in ['quick_gelu', 'gelu', 'swi_glu'] super().__init__() self.dim = dim self.mlp_ratio = mlp_ratio self.num_heads = num_heads self.post_norm = post_norm self.causal = causal self.norm_eps = norm_eps # layers self.norm1 = LayerNorm(dim, eps=norm_eps) self.attn = SelfAttention(dim, num_heads, causal, attn_dropout, proj_dropout) self.norm2 = LayerNorm(dim, eps=norm_eps) if activation == 'swi_glu': self.mlp = SwiGLU(dim, int(dim * mlp_ratio)) else: self.mlp = nn.Sequential( nn.Linear(dim, int(dim * mlp_ratio)), QuickGELU() if activation == 'quick_gelu' else nn.GELU(), nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout)) def forward(self, x): if self.post_norm: x = x + self.norm1(self.attn(x)) x = x + self.norm2(self.mlp(x)) else: x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x class AttentionPool(nn.Module): def __init__(self, dim, mlp_ratio, num_heads, activation='gelu', proj_dropout=0.0, norm_eps=1e-5): assert dim % num_heads == 0 super().__init__() self.dim = dim self.mlp_ratio = mlp_ratio self.num_heads = num_heads self.head_dim = dim // num_heads self.proj_dropout = proj_dropout self.norm_eps = norm_eps # layers gain = 1.0 / math.sqrt(dim) self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) self.to_q = nn.Linear(dim, dim) self.to_kv = nn.Linear(dim, dim * 2) self.proj = nn.Linear(dim, dim) self.norm = LayerNorm(dim, eps=norm_eps) self.mlp = nn.Sequential( nn.Linear(dim, int(dim * mlp_ratio)), QuickGELU() if activation == 'quick_gelu' else nn.GELU(), nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout)) def forward(self, x): """ x: [B, L, C]. """ b, s, c, n, d = *x.size(), self.num_heads, self.head_dim # compute query, key, value q = self.to_q(self.cls_embedding).view(1, 1, n, d).expand(b, -1, -1, -1) k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2) # compute attention x = flash_attention(q, k, v, version=2) x = x.reshape(b, 1, c) # output x = self.proj(x) x = F.dropout(x, self.proj_dropout, self.training) # mlp x = x + self.mlp(self.norm(x)) return x[:, 0] class VisionTransformer(nn.Module): def __init__(self, image_size=224, patch_size=16, dim=768, mlp_ratio=4, out_dim=512, num_heads=12, num_layers=12, pool_type='token', pre_norm=True, post_norm=False, activation='quick_gelu', attn_dropout=0.0, proj_dropout=0.0, embedding_dropout=0.0, norm_eps=1e-5): if image_size % patch_size != 0: print( '[WARNING] image_size is not divisible by patch_size', flush=True) assert pool_type in ('token', 'token_fc', 'attn_pool') out_dim = out_dim or dim super().__init__() self.image_size = image_size self.patch_size = patch_size self.num_patches = (image_size // patch_size)**2 self.dim = dim self.mlp_ratio = mlp_ratio self.out_dim = out_dim self.num_heads = num_heads self.num_layers = num_layers self.pool_type = pool_type self.post_norm = post_norm self.norm_eps = norm_eps # embeddings gain = 1.0 / math.sqrt(dim) self.patch_embedding = nn.Conv2d( 3, dim, kernel_size=patch_size, stride=patch_size, bias=not pre_norm) if pool_type in ('token', 'token_fc'): self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) self.pos_embedding = nn.Parameter(gain * torch.randn( 1, self.num_patches + (1 if pool_type in ('token', 'token_fc') else 0), dim)) self.dropout = nn.Dropout(embedding_dropout) # transformer self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None self.transformer = nn.Sequential(*[ AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False, activation, attn_dropout, proj_dropout, norm_eps) for _ in range(num_layers) ]) self.post_norm = LayerNorm(dim, eps=norm_eps) # head if pool_type == 'token': self.head = nn.Parameter(gain * torch.randn(dim, out_dim)) elif pool_type == 'token_fc': self.head = nn.Linear(dim, out_dim) elif pool_type == 'attn_pool': self.head = AttentionPool(dim, mlp_ratio, num_heads, activation, proj_dropout, norm_eps) def forward(self, x, interpolation=False, use_31_block=False): b = x.size(0) # embeddings x = self.patch_embedding(x).flatten(2).permute(0, 2, 1) if self.pool_type in ('token', 'token_fc'): x = torch.cat([self.cls_embedding.expand(b, -1, -1), x], dim=1) if interpolation: e = pos_interpolate(self.pos_embedding, x.size(1)) else: e = self.pos_embedding x = self.dropout(x + e) if self.pre_norm is not None: x = self.pre_norm(x) # transformer if use_31_block: x = self.transformer[:-1](x) return x else: x = self.transformer(x) return x class XLMRobertaWithHead(XLMRoberta): def __init__(self, **kwargs): self.out_dim = kwargs.pop('out_dim') super().__init__(**kwargs) # head mid_dim = (self.dim + self.out_dim) // 2 self.head = nn.Sequential( nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(), nn.Linear(mid_dim, self.out_dim, bias=False)) def forward(self, ids): # xlm-roberta x = super().forward(ids) # average pooling mask = ids.ne(self.pad_id).unsqueeze(-1).to(x) x = (x * mask).sum(dim=1) / mask.sum(dim=1) # head x = self.head(x) return x class XLMRobertaCLIP(nn.Module): def __init__(self, embed_dim=1024, image_size=224, patch_size=14, vision_dim=1280, vision_mlp_ratio=4, vision_heads=16, vision_layers=32, vision_pool='token', vision_pre_norm=True, vision_post_norm=False, activation='gelu', vocab_size=250002, max_text_len=514, type_size=1, pad_id=1, text_dim=1024, text_heads=16, text_layers=24, text_post_norm=True, text_dropout=0.1, attn_dropout=0.0, proj_dropout=0.0, embedding_dropout=0.0, norm_eps=1e-5): super().__init__() self.embed_dim = embed_dim self.image_size = image_size self.patch_size = patch_size self.vision_dim = vision_dim self.vision_mlp_ratio = vision_mlp_ratio self.vision_heads = vision_heads self.vision_layers = vision_layers self.vision_pre_norm = vision_pre_norm self.vision_post_norm = vision_post_norm self.activation = activation self.vocab_size = vocab_size self.max_text_len = max_text_len self.type_size = type_size self.pad_id = pad_id self.text_dim = text_dim self.text_heads = text_heads self.text_layers = text_layers self.text_post_norm = text_post_norm self.norm_eps = norm_eps # models self.visual = VisionTransformer( image_size=image_size, patch_size=patch_size, dim=vision_dim, mlp_ratio=vision_mlp_ratio, out_dim=embed_dim, num_heads=vision_heads, num_layers=vision_layers, pool_type=vision_pool, pre_norm=vision_pre_norm, post_norm=vision_post_norm, activation=activation, attn_dropout=attn_dropout, proj_dropout=proj_dropout, embedding_dropout=embedding_dropout, norm_eps=norm_eps) self.textual = XLMRobertaWithHead( vocab_size=vocab_size, max_seq_len=max_text_len, type_size=type_size, pad_id=pad_id, dim=text_dim, out_dim=embed_dim, num_heads=text_heads, num_layers=text_layers, post_norm=text_post_norm, dropout=text_dropout) self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([])) def forward(self, imgs, txt_ids): """ imgs: [B, 3, H, W] of torch.float32. - mean: [0.48145466, 0.4578275, 0.40821073] - std: [0.26862954, 0.26130258, 0.27577711] txt_ids: [B, L] of torch.long. Encoded by data.CLIPTokenizer. """ xi = self.visual(imgs) xt = self.textual(txt_ids) return xi, xt def param_groups(self): groups = [{ 'params': [ p for n, p in self.named_parameters() if 'norm' in n or n.endswith('bias') ], 'weight_decay': 0.0 }, { 'params': [ p for n, p in self.named_parameters() if not ('norm' in n or n.endswith('bias')) ] }] return groups def _clip(pretrained=False, pretrained_name=None, model_cls=XLMRobertaCLIP, return_transforms=False, return_tokenizer=False, tokenizer_padding='eos', dtype=torch.float32, device='cpu', **kwargs): # init a model on device with torch.device(device): model = model_cls(**kwargs) # set device model = model.to(dtype=dtype, device=device) output = (model,) # init transforms if return_transforms: # mean and std if 'siglip' in pretrained_name.lower(): mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] else: mean = [0.48145466, 0.4578275, 0.40821073] std = [0.26862954, 0.26130258, 0.27577711] # transforms transforms = T.Compose([ T.Resize((model.image_size, model.image_size), interpolation=T.InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=mean, std=std) ]) output += (transforms,) return output[0] if len(output) == 1 else output def clip_xlm_roberta_vit_h_14( pretrained=False, pretrained_name='open-clip-xlm-roberta-large-vit-huge-14', **kwargs): cfg = dict( embed_dim=1024, image_size=224, patch_size=14, vision_dim=1280, vision_mlp_ratio=4, vision_heads=16, vision_layers=32, vision_pool='token', activation='gelu', vocab_size=250002, max_text_len=514, type_size=1, pad_id=1, text_dim=1024, text_heads=16, text_layers=24, text_post_norm=True, text_dropout=0.1, attn_dropout=0.0, proj_dropout=0.0, embedding_dropout=0.0) cfg.update(**kwargs) return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg) class CLIPModel: def __init__(self, dtype, device, checkpoint_path, tokenizer_path): self.dtype = dtype self.device = device self.checkpoint_path = checkpoint_path self.tokenizer_path = tokenizer_path # init model self.model, self.transforms = clip_xlm_roberta_vit_h_14( pretrained=False, return_transforms=True, return_tokenizer=False, dtype=dtype, device=device) self.model = self.model.eval().requires_grad_(False) logging.info(f'loading {checkpoint_path}') self.model.load_state_dict( torch.load(checkpoint_path, map_location='cpu')) # init tokenizer self.tokenizer = HuggingfaceTokenizer( name=tokenizer_path, seq_len=self.model.max_text_len - 2, clean='whitespace') def visual(self, videos): # preprocess size = (self.model.image_size,) * 2 videos = torch.cat([ F.interpolate( u.transpose(0, 1), size=size, mode='bicubic', align_corners=False) for u in videos ]) videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5)) # forward with torch.cuda.amp.autocast(dtype=self.dtype): out = self.model.visual(videos, use_31_block=True) return out