|
|
|
|
|
from __future__ import annotations |
|
|
|
import base64 |
|
import logging |
|
import math |
|
import os |
|
import sys |
|
import time |
|
import warnings |
|
from functools import lru_cache |
|
from io import BytesIO |
|
|
|
import requests |
|
import torch |
|
import torchvision |
|
from packaging import version |
|
from PIL import Image |
|
from torchvision import io, transforms |
|
from torchvision.transforms import InterpolationMode |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
IMAGE_FACTOR = 28 |
|
MIN_PIXELS = 4 * 28 * 28 |
|
MAX_PIXELS = 16384 * 28 * 28 |
|
MAX_RATIO = 200 |
|
|
|
VIDEO_MIN_PIXELS = 128 * 28 * 28 |
|
VIDEO_MAX_PIXELS = 768 * 28 * 28 |
|
VIDEO_TOTAL_PIXELS = 24576 * 28 * 28 |
|
FRAME_FACTOR = 2 |
|
FPS = 2.0 |
|
FPS_MIN_FRAMES = 4 |
|
FPS_MAX_FRAMES = 768 |
|
|
|
|
|
def round_by_factor(number: int, factor: int) -> int: |
|
"""Returns the closest integer to 'number' that is divisible by 'factor'.""" |
|
return round(number / factor) * factor |
|
|
|
|
|
def ceil_by_factor(number: int, factor: int) -> int: |
|
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'.""" |
|
return math.ceil(number / factor) * factor |
|
|
|
|
|
def floor_by_factor(number: int, factor: int) -> int: |
|
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'.""" |
|
return math.floor(number / factor) * factor |
|
|
|
|
|
def smart_resize(height: int, |
|
width: int, |
|
factor: int = IMAGE_FACTOR, |
|
min_pixels: int = MIN_PIXELS, |
|
max_pixels: int = MAX_PIXELS) -> tuple[int, int]: |
|
""" |
|
Rescales the image so that the following conditions are met: |
|
|
|
1. Both dimensions (height and width) are divisible by 'factor'. |
|
|
|
2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. |
|
|
|
3. The aspect ratio of the image is maintained as closely as possible. |
|
""" |
|
if max(height, width) / min(height, width) > MAX_RATIO: |
|
raise ValueError( |
|
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}" |
|
) |
|
h_bar = max(factor, round_by_factor(height, factor)) |
|
w_bar = max(factor, round_by_factor(width, factor)) |
|
if h_bar * w_bar > max_pixels: |
|
beta = math.sqrt((height * width) / max_pixels) |
|
h_bar = floor_by_factor(height / beta, factor) |
|
w_bar = floor_by_factor(width / beta, factor) |
|
elif h_bar * w_bar < min_pixels: |
|
beta = math.sqrt(min_pixels / (height * width)) |
|
h_bar = ceil_by_factor(height * beta, factor) |
|
w_bar = ceil_by_factor(width * beta, factor) |
|
return h_bar, w_bar |
|
|
|
|
|
def fetch_image(ele: dict[str, str | Image.Image], |
|
size_factor: int = IMAGE_FACTOR) -> Image.Image: |
|
if "image" in ele: |
|
image = ele["image"] |
|
else: |
|
image = ele["image_url"] |
|
image_obj = None |
|
if isinstance(image, Image.Image): |
|
image_obj = image |
|
elif image.startswith("http://") or image.startswith("https://"): |
|
image_obj = Image.open(requests.get(image, stream=True).raw) |
|
elif image.startswith("file://"): |
|
image_obj = Image.open(image[7:]) |
|
elif image.startswith("data:image"): |
|
if "base64," in image: |
|
_, base64_data = image.split("base64,", 1) |
|
data = base64.b64decode(base64_data) |
|
image_obj = Image.open(BytesIO(data)) |
|
else: |
|
image_obj = Image.open(image) |
|
if image_obj is None: |
|
raise ValueError( |
|
f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}" |
|
) |
|
image = image_obj.convert("RGB") |
|
|
|
if "resized_height" in ele and "resized_width" in ele: |
|
resized_height, resized_width = smart_resize( |
|
ele["resized_height"], |
|
ele["resized_width"], |
|
factor=size_factor, |
|
) |
|
else: |
|
width, height = image.size |
|
min_pixels = ele.get("min_pixels", MIN_PIXELS) |
|
max_pixels = ele.get("max_pixels", MAX_PIXELS) |
|
resized_height, resized_width = smart_resize( |
|
height, |
|
width, |
|
factor=size_factor, |
|
min_pixels=min_pixels, |
|
max_pixels=max_pixels, |
|
) |
|
image = image.resize((resized_width, resized_height)) |
|
|
|
return image |
|
|
|
|
|
def smart_nframes( |
|
ele: dict, |
|
total_frames: int, |
|
video_fps: int | float, |
|
) -> int: |
|
"""calculate the number of frames for video used for model inputs. |
|
|
|
Args: |
|
ele (dict): a dict contains the configuration of video. |
|
support either `fps` or `nframes`: |
|
- nframes: the number of frames to extract for model inputs. |
|
- fps: the fps to extract frames for model inputs. |
|
- min_frames: the minimum number of frames of the video, only used when fps is provided. |
|
- max_frames: the maximum number of frames of the video, only used when fps is provided. |
|
total_frames (int): the original total number of frames of the video. |
|
video_fps (int | float): the original fps of the video. |
|
|
|
Raises: |
|
ValueError: nframes should in interval [FRAME_FACTOR, total_frames]. |
|
|
|
Returns: |
|
int: the number of frames for video used for model inputs. |
|
""" |
|
assert not ("fps" in ele and |
|
"nframes" in ele), "Only accept either `fps` or `nframes`" |
|
if "nframes" in ele: |
|
nframes = round_by_factor(ele["nframes"], FRAME_FACTOR) |
|
else: |
|
fps = ele.get("fps", FPS) |
|
min_frames = ceil_by_factor( |
|
ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR) |
|
max_frames = floor_by_factor( |
|
ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), |
|
FRAME_FACTOR) |
|
nframes = total_frames / video_fps * fps |
|
nframes = min(max(nframes, min_frames), max_frames) |
|
nframes = round_by_factor(nframes, FRAME_FACTOR) |
|
if not (FRAME_FACTOR <= nframes and nframes <= total_frames): |
|
raise ValueError( |
|
f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}." |
|
) |
|
return nframes |
|
|
|
|
|
def _read_video_torchvision(ele: dict,) -> torch.Tensor: |
|
"""read video using torchvision.io.read_video |
|
|
|
Args: |
|
ele (dict): a dict contains the configuration of video. |
|
support keys: |
|
- video: the path of video. support "file://", "http://", "https://" and local path. |
|
- video_start: the start time of video. |
|
- video_end: the end time of video. |
|
Returns: |
|
torch.Tensor: the video tensor with shape (T, C, H, W). |
|
""" |
|
video_path = ele["video"] |
|
if version.parse(torchvision.__version__) < version.parse("0.19.0"): |
|
if "http://" in video_path or "https://" in video_path: |
|
warnings.warn( |
|
"torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0." |
|
) |
|
if "file://" in video_path: |
|
video_path = video_path[7:] |
|
st = time.time() |
|
video, audio, info = io.read_video( |
|
video_path, |
|
start_pts=ele.get("video_start", 0.0), |
|
end_pts=ele.get("video_end", None), |
|
pts_unit="sec", |
|
output_format="TCHW", |
|
) |
|
total_frames, video_fps = video.size(0), info["video_fps"] |
|
logger.info( |
|
f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s" |
|
) |
|
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) |
|
idx = torch.linspace(0, total_frames - 1, nframes).round().long() |
|
video = video[idx] |
|
return video |
|
|
|
|
|
def is_decord_available() -> bool: |
|
import importlib.util |
|
|
|
return importlib.util.find_spec("decord") is not None |
|
|
|
|
|
def _read_video_decord(ele: dict,) -> torch.Tensor: |
|
"""read video using decord.VideoReader |
|
|
|
Args: |
|
ele (dict): a dict contains the configuration of video. |
|
support keys: |
|
- video: the path of video. support "file://", "http://", "https://" and local path. |
|
- video_start: the start time of video. |
|
- video_end: the end time of video. |
|
Returns: |
|
torch.Tensor: the video tensor with shape (T, C, H, W). |
|
""" |
|
import decord |
|
video_path = ele["video"] |
|
st = time.time() |
|
vr = decord.VideoReader(video_path) |
|
|
|
if 'video_start' in ele or 'video_end' in ele: |
|
raise NotImplementedError( |
|
"not support start_pts and end_pts in decord for now.") |
|
total_frames, video_fps = len(vr), vr.get_avg_fps() |
|
logger.info( |
|
f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s" |
|
) |
|
nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) |
|
idx = torch.linspace(0, total_frames - 1, nframes).round().long().tolist() |
|
video = vr.get_batch(idx).asnumpy() |
|
video = torch.tensor(video).permute(0, 3, 1, 2) |
|
return video |
|
|
|
|
|
VIDEO_READER_BACKENDS = { |
|
"decord": _read_video_decord, |
|
"torchvision": _read_video_torchvision, |
|
} |
|
|
|
FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None) |
|
|
|
|
|
@lru_cache(maxsize=1) |
|
def get_video_reader_backend() -> str: |
|
if FORCE_QWENVL_VIDEO_READER is not None: |
|
video_reader_backend = FORCE_QWENVL_VIDEO_READER |
|
elif is_decord_available(): |
|
video_reader_backend = "decord" |
|
else: |
|
video_reader_backend = "torchvision" |
|
print( |
|
f"qwen-vl-utils using {video_reader_backend} to read video.", |
|
file=sys.stderr) |
|
return video_reader_backend |
|
|
|
|
|
def fetch_video( |
|
ele: dict, |
|
image_factor: int = IMAGE_FACTOR) -> torch.Tensor | list[Image.Image]: |
|
if isinstance(ele["video"], str): |
|
video_reader_backend = get_video_reader_backend() |
|
video = VIDEO_READER_BACKENDS[video_reader_backend](ele) |
|
nframes, _, height, width = video.shape |
|
|
|
min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS) |
|
total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS) |
|
max_pixels = max( |
|
min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), |
|
int(min_pixels * 1.05)) |
|
max_pixels = ele.get("max_pixels", max_pixels) |
|
if "resized_height" in ele and "resized_width" in ele: |
|
resized_height, resized_width = smart_resize( |
|
ele["resized_height"], |
|
ele["resized_width"], |
|
factor=image_factor, |
|
) |
|
else: |
|
resized_height, resized_width = smart_resize( |
|
height, |
|
width, |
|
factor=image_factor, |
|
min_pixels=min_pixels, |
|
max_pixels=max_pixels, |
|
) |
|
video = transforms.functional.resize( |
|
video, |
|
[resized_height, resized_width], |
|
interpolation=InterpolationMode.BICUBIC, |
|
antialias=True, |
|
).float() |
|
return video |
|
else: |
|
assert isinstance(ele["video"], (list, tuple)) |
|
process_info = ele.copy() |
|
process_info.pop("type", None) |
|
process_info.pop("video", None) |
|
images = [ |
|
fetch_image({ |
|
"image": video_element, |
|
**process_info |
|
}, |
|
size_factor=image_factor) |
|
for video_element in ele["video"] |
|
] |
|
nframes = ceil_by_factor(len(images), FRAME_FACTOR) |
|
if len(images) < nframes: |
|
images.extend([images[-1]] * (nframes - len(images))) |
|
return images |
|
|
|
|
|
def extract_vision_info( |
|
conversations: list[dict] | list[list[dict]]) -> list[dict]: |
|
vision_infos = [] |
|
if isinstance(conversations[0], dict): |
|
conversations = [conversations] |
|
for conversation in conversations: |
|
for message in conversation: |
|
if isinstance(message["content"], list): |
|
for ele in message["content"]: |
|
if ("image" in ele or "image_url" in ele or |
|
"video" in ele or |
|
ele["type"] in ("image", "image_url", "video")): |
|
vision_infos.append(ele) |
|
return vision_infos |
|
|
|
|
|
def process_vision_info( |
|
conversations: list[dict] | list[list[dict]], |
|
) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] | |
|
None]: |
|
vision_infos = extract_vision_info(conversations) |
|
|
|
image_inputs = [] |
|
video_inputs = [] |
|
for vision_info in vision_infos: |
|
if "image" in vision_info or "image_url" in vision_info: |
|
image_inputs.append(fetch_image(vision_info)) |
|
elif "video" in vision_info: |
|
video_inputs.append(fetch_video(vision_info)) |
|
else: |
|
raise ValueError("image, image_url or video should in content.") |
|
if len(image_inputs) == 0: |
|
image_inputs = None |
|
if len(video_inputs) == 0: |
|
video_inputs = None |
|
return image_inputs, video_inputs |
|
|