|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
__all__ = ['XLMRoberta', 'xlm_roberta_large'] |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, dropout=0.1, eps=1e-5): |
|
assert dim % num_heads == 0 |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.eps = eps |
|
|
|
|
|
self.q = nn.Linear(dim, dim) |
|
self.k = nn.Linear(dim, dim) |
|
self.v = nn.Linear(dim, dim) |
|
self.o = nn.Linear(dim, dim) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x, mask): |
|
""" |
|
x: [B, L, C]. |
|
""" |
|
b, s, c, n, d = *x.size(), self.num_heads, self.head_dim |
|
|
|
|
|
q = self.q(x).reshape(b, s, n, d).permute(0, 2, 1, 3) |
|
k = self.k(x).reshape(b, s, n, d).permute(0, 2, 1, 3) |
|
v = self.v(x).reshape(b, s, n, d).permute(0, 2, 1, 3) |
|
|
|
|
|
p = self.dropout.p if self.training else 0.0 |
|
x = F.scaled_dot_product_attention(q, k, v, mask, p) |
|
x = x.permute(0, 2, 1, 3).reshape(b, s, c) |
|
|
|
|
|
x = self.o(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, post_norm, dropout=0.1, eps=1e-5): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.post_norm = post_norm |
|
self.eps = eps |
|
|
|
|
|
self.attn = SelfAttention(dim, num_heads, dropout, eps) |
|
self.norm1 = nn.LayerNorm(dim, eps=eps) |
|
self.ffn = nn.Sequential( |
|
nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim), |
|
nn.Dropout(dropout)) |
|
self.norm2 = nn.LayerNorm(dim, eps=eps) |
|
|
|
def forward(self, x, mask): |
|
if self.post_norm: |
|
x = self.norm1(x + self.attn(x, mask)) |
|
x = self.norm2(x + self.ffn(x)) |
|
else: |
|
x = x + self.attn(self.norm1(x), mask) |
|
x = x + self.ffn(self.norm2(x)) |
|
return x |
|
|
|
|
|
class XLMRoberta(nn.Module): |
|
""" |
|
XLMRobertaModel with no pooler and no LM head. |
|
""" |
|
|
|
def __init__(self, |
|
vocab_size=250002, |
|
max_seq_len=514, |
|
type_size=1, |
|
pad_id=1, |
|
dim=1024, |
|
num_heads=16, |
|
num_layers=24, |
|
post_norm=True, |
|
dropout=0.1, |
|
eps=1e-5): |
|
super().__init__() |
|
self.vocab_size = vocab_size |
|
self.max_seq_len = max_seq_len |
|
self.type_size = type_size |
|
self.pad_id = pad_id |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.num_layers = num_layers |
|
self.post_norm = post_norm |
|
self.eps = eps |
|
|
|
|
|
self.token_embedding = nn.Embedding(vocab_size, dim, padding_idx=pad_id) |
|
self.type_embedding = nn.Embedding(type_size, dim) |
|
self.pos_embedding = nn.Embedding(max_seq_len, dim, padding_idx=pad_id) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
AttentionBlock(dim, num_heads, post_norm, dropout, eps) |
|
for _ in range(num_layers) |
|
]) |
|
|
|
|
|
self.norm = nn.LayerNorm(dim, eps=eps) |
|
|
|
def forward(self, ids): |
|
""" |
|
ids: [B, L] of torch.LongTensor. |
|
""" |
|
b, s = ids.shape |
|
mask = ids.ne(self.pad_id).long() |
|
|
|
|
|
x = self.token_embedding(ids) + \ |
|
self.type_embedding(torch.zeros_like(ids)) + \ |
|
self.pos_embedding(self.pad_id + torch.cumsum(mask, dim=1) * mask) |
|
if self.post_norm: |
|
x = self.norm(x) |
|
x = self.dropout(x) |
|
|
|
|
|
mask = torch.where( |
|
mask.view(b, 1, 1, s).gt(0), 0.0, |
|
torch.finfo(x.dtype).min) |
|
for block in self.blocks: |
|
x = block(x, mask) |
|
|
|
|
|
if not self.post_norm: |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
def xlm_roberta_large(pretrained=False, |
|
return_tokenizer=False, |
|
device='cpu', |
|
**kwargs): |
|
""" |
|
XLMRobertaLarge adapted from Huggingface. |
|
""" |
|
|
|
cfg = dict( |
|
vocab_size=250002, |
|
max_seq_len=514, |
|
type_size=1, |
|
pad_id=1, |
|
dim=1024, |
|
num_heads=16, |
|
num_layers=24, |
|
post_norm=True, |
|
dropout=0.1, |
|
eps=1e-5) |
|
cfg.update(**kwargs) |
|
|
|
|
|
with torch.device(device): |
|
model = XLMRoberta(**cfg) |
|
return model |
|
|