|
|
|
import gc |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import sys |
|
import types |
|
from contextlib import contextmanager |
|
from functools import partial |
|
|
|
import numpy as np |
|
import torch |
|
import torch.cuda.amp as amp |
|
import torch.distributed as dist |
|
import torchvision.transforms.functional as TF |
|
from tqdm import tqdm |
|
|
|
from .distributed.fsdp import shard_model |
|
from .modules.clip import CLIPModel |
|
from .modules.model import WanModel |
|
from .modules.t5 import T5EncoderModel |
|
from .modules.vae import WanVAE |
|
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, |
|
get_sampling_sigmas, retrieve_timesteps) |
|
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler |
|
|
|
|
|
class WanI2V: |
|
|
|
def __init__( |
|
self, |
|
config, |
|
checkpoint_dir, |
|
device_id=0, |
|
rank=0, |
|
t5_fsdp=False, |
|
dit_fsdp=False, |
|
use_usp=False, |
|
t5_cpu=False, |
|
init_on_cpu=True, |
|
): |
|
r""" |
|
Initializes the image-to-video generation model components. |
|
|
|
Args: |
|
config (EasyDict): |
|
Object containing model parameters initialized from config.py |
|
checkpoint_dir (`str`): |
|
Path to directory containing model checkpoints |
|
device_id (`int`, *optional*, defaults to 0): |
|
Id of target GPU device |
|
rank (`int`, *optional*, defaults to 0): |
|
Process rank for distributed training |
|
t5_fsdp (`bool`, *optional*, defaults to False): |
|
Enable FSDP sharding for T5 model |
|
dit_fsdp (`bool`, *optional*, defaults to False): |
|
Enable FSDP sharding for DiT model |
|
use_usp (`bool`, *optional*, defaults to False): |
|
Enable distribution strategy of USP. |
|
t5_cpu (`bool`, *optional*, defaults to False): |
|
Whether to place T5 model on CPU. Only works without t5_fsdp. |
|
init_on_cpu (`bool`, *optional*, defaults to True): |
|
Enable initializing Transformer Model on CPU. Only works without FSDP or USP. |
|
""" |
|
self.device = torch.device(f"cuda:{device_id}") |
|
self.config = config |
|
self.rank = rank |
|
self.use_usp = use_usp |
|
self.t5_cpu = t5_cpu |
|
|
|
self.num_train_timesteps = config.num_train_timesteps |
|
self.param_dtype = config.param_dtype |
|
|
|
shard_fn = partial(shard_model, device_id=device_id) |
|
self.text_encoder = T5EncoderModel( |
|
text_len=config.text_len, |
|
dtype=config.t5_dtype, |
|
device=torch.device('cpu'), |
|
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint), |
|
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), |
|
shard_fn=shard_fn if t5_fsdp else None, |
|
) |
|
|
|
self.vae_stride = config.vae_stride |
|
self.patch_size = config.patch_size |
|
self.vae = WanVAE( |
|
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), |
|
device=self.device) |
|
|
|
self.clip = CLIPModel( |
|
dtype=config.clip_dtype, |
|
device=self.device, |
|
checkpoint_path=os.path.join(checkpoint_dir, |
|
config.clip_checkpoint), |
|
tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer)) |
|
|
|
logging.info(f"Creating WanModel from {checkpoint_dir}") |
|
self.model = WanModel.from_pretrained(checkpoint_dir) |
|
self.model.eval().requires_grad_(False) |
|
|
|
if t5_fsdp or dit_fsdp or use_usp: |
|
init_on_cpu = False |
|
|
|
if use_usp: |
|
from xfuser.core.distributed import \ |
|
get_sequence_parallel_world_size |
|
|
|
from .distributed.xdit_context_parallel import (usp_attn_forward, |
|
usp_dit_forward) |
|
for block in self.model.blocks: |
|
block.self_attn.forward = types.MethodType( |
|
usp_attn_forward, block.self_attn) |
|
self.model.forward = types.MethodType(usp_dit_forward, self.model) |
|
self.sp_size = get_sequence_parallel_world_size() |
|
else: |
|
self.sp_size = 1 |
|
|
|
if dist.is_initialized(): |
|
dist.barrier() |
|
if dit_fsdp: |
|
self.model = shard_fn(self.model) |
|
else: |
|
if not init_on_cpu: |
|
self.model.to(self.device) |
|
|
|
self.sample_neg_prompt = config.sample_neg_prompt |
|
|
|
def generate(self, |
|
input_prompt, |
|
img, |
|
max_area=720 * 1280, |
|
frame_num=81, |
|
shift=5.0, |
|
sample_solver='unipc', |
|
sampling_steps=40, |
|
guide_scale=5.0, |
|
n_prompt="", |
|
seed=-1, |
|
offload_model=True): |
|
r""" |
|
Generates video frames from input image and text prompt using diffusion process. |
|
|
|
Args: |
|
input_prompt (`str`): |
|
Text prompt for content generation. |
|
img (PIL.Image.Image): |
|
Input image tensor. Shape: [3, H, W] |
|
max_area (`int`, *optional*, defaults to 720*1280): |
|
Maximum pixel area for latent space calculation. Controls video resolution scaling |
|
frame_num (`int`, *optional*, defaults to 81): |
|
How many frames to sample from a video. The number should be 4n+1 |
|
shift (`float`, *optional*, defaults to 5.0): |
|
Noise schedule shift parameter. Affects temporal dynamics |
|
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0. |
|
sample_solver (`str`, *optional*, defaults to 'unipc'): |
|
Solver used to sample the video. |
|
sampling_steps (`int`, *optional*, defaults to 40): |
|
Number of diffusion sampling steps. Higher values improve quality but slow generation |
|
guide_scale (`float`, *optional*, defaults 5.0): |
|
Classifier-free guidance scale. Controls prompt adherence vs. creativity |
|
n_prompt (`str`, *optional*, defaults to ""): |
|
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` |
|
seed (`int`, *optional*, defaults to -1): |
|
Random seed for noise generation. If -1, use random seed |
|
offload_model (`bool`, *optional*, defaults to True): |
|
If True, offloads models to CPU during generation to save VRAM |
|
|
|
Returns: |
|
torch.Tensor: |
|
Generated video frames tensor. Dimensions: (C, N H, W) where: |
|
- C: Color channels (3 for RGB) |
|
- N: Number of frames (81) |
|
- H: Frame height (from max_area) |
|
- W: Frame width from max_area) |
|
""" |
|
img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device) |
|
|
|
F = frame_num |
|
h, w = img.shape[1:] |
|
aspect_ratio = h / w |
|
lat_h = round( |
|
np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] // |
|
self.patch_size[1] * self.patch_size[1]) |
|
lat_w = round( |
|
np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] // |
|
self.patch_size[2] * self.patch_size[2]) |
|
h = lat_h * self.vae_stride[1] |
|
w = lat_w * self.vae_stride[2] |
|
|
|
max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // ( |
|
self.patch_size[1] * self.patch_size[2]) |
|
max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size |
|
|
|
seed = seed if seed >= 0 else random.randint(0, sys.maxsize) |
|
seed_g = torch.Generator(device=self.device) |
|
seed_g.manual_seed(seed) |
|
noise = torch.randn( |
|
16, |
|
21, |
|
lat_h, |
|
lat_w, |
|
dtype=torch.float32, |
|
generator=seed_g, |
|
device=self.device) |
|
|
|
msk = torch.ones(1, 81, lat_h, lat_w, device=self.device) |
|
msk[:, 1:] = 0 |
|
msk = torch.concat([ |
|
torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] |
|
], |
|
dim=1) |
|
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) |
|
msk = msk.transpose(1, 2)[0] |
|
|
|
if n_prompt == "": |
|
n_prompt = self.sample_neg_prompt |
|
|
|
|
|
if not self.t5_cpu: |
|
self.text_encoder.model.to(self.device) |
|
context = self.text_encoder([input_prompt], self.device) |
|
context_null = self.text_encoder([n_prompt], self.device) |
|
if offload_model: |
|
self.text_encoder.model.cpu() |
|
else: |
|
context = self.text_encoder([input_prompt], torch.device('cpu')) |
|
context_null = self.text_encoder([n_prompt], torch.device('cpu')) |
|
context = [t.to(self.device) for t in context] |
|
context_null = [t.to(self.device) for t in context_null] |
|
|
|
self.clip.model.to(self.device) |
|
clip_context = self.clip.visual([img[:, None, :, :]]) |
|
if offload_model: |
|
self.clip.model.cpu() |
|
|
|
y = self.vae.encode([ |
|
torch.concat([ |
|
torch.nn.functional.interpolate( |
|
img[None].cpu(), size=(h, w), mode='bicubic').transpose( |
|
0, 1), |
|
torch.zeros(3, 80, h, w) |
|
], |
|
dim=1).to(self.device) |
|
])[0] |
|
y = torch.concat([msk, y]) |
|
|
|
@contextmanager |
|
def noop_no_sync(): |
|
yield |
|
|
|
no_sync = getattr(self.model, 'no_sync', noop_no_sync) |
|
|
|
|
|
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): |
|
|
|
if sample_solver == 'unipc': |
|
sample_scheduler = FlowUniPCMultistepScheduler( |
|
num_train_timesteps=self.num_train_timesteps, |
|
shift=1, |
|
use_dynamic_shifting=False) |
|
sample_scheduler.set_timesteps( |
|
sampling_steps, device=self.device, shift=shift) |
|
timesteps = sample_scheduler.timesteps |
|
elif sample_solver == 'dpm++': |
|
sample_scheduler = FlowDPMSolverMultistepScheduler( |
|
num_train_timesteps=self.num_train_timesteps, |
|
shift=1, |
|
use_dynamic_shifting=False) |
|
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) |
|
timesteps, _ = retrieve_timesteps( |
|
sample_scheduler, |
|
device=self.device, |
|
sigmas=sampling_sigmas) |
|
else: |
|
raise NotImplementedError("Unsupported solver.") |
|
|
|
|
|
latent = noise |
|
|
|
arg_c = { |
|
'context': [context[0]], |
|
'clip_fea': clip_context, |
|
'seq_len': max_seq_len, |
|
'y': [y], |
|
} |
|
|
|
arg_null = { |
|
'context': context_null, |
|
'clip_fea': clip_context, |
|
'seq_len': max_seq_len, |
|
'y': [y], |
|
} |
|
|
|
if offload_model: |
|
torch.cuda.empty_cache() |
|
|
|
self.model.to(self.device) |
|
for _, t in enumerate(tqdm(timesteps)): |
|
latent_model_input = [latent.to(self.device)] |
|
timestep = [t] |
|
|
|
timestep = torch.stack(timestep).to(self.device) |
|
|
|
noise_pred_cond = self.model( |
|
latent_model_input, t=timestep, **arg_c)[0].to( |
|
torch.device('cpu') if offload_model else self.device) |
|
if offload_model: |
|
torch.cuda.empty_cache() |
|
noise_pred_uncond = self.model( |
|
latent_model_input, t=timestep, **arg_null)[0].to( |
|
torch.device('cpu') if offload_model else self.device) |
|
if offload_model: |
|
torch.cuda.empty_cache() |
|
noise_pred = noise_pred_uncond + guide_scale * ( |
|
noise_pred_cond - noise_pred_uncond) |
|
|
|
latent = latent.to( |
|
torch.device('cpu') if offload_model else self.device) |
|
|
|
temp_x0 = sample_scheduler.step( |
|
noise_pred.unsqueeze(0), |
|
t, |
|
latent.unsqueeze(0), |
|
return_dict=False, |
|
generator=seed_g)[0] |
|
latent = temp_x0.squeeze(0) |
|
|
|
x0 = [latent.to(self.device)] |
|
del latent_model_input, timestep |
|
|
|
if offload_model: |
|
self.model.cpu() |
|
torch.cuda.empty_cache() |
|
|
|
if self.rank == 0: |
|
videos = self.vae.decode(x0) |
|
|
|
del noise, latent |
|
del sample_scheduler |
|
if offload_model: |
|
gc.collect() |
|
torch.cuda.synchronize() |
|
if dist.is_initialized(): |
|
dist.barrier() |
|
|
|
return videos[0] if self.rank == 0 else None |
|
|