|
|
|
import torch |
|
import torch.cuda.amp as amp |
|
from xfuser.core.distributed import (get_sequence_parallel_rank, |
|
get_sequence_parallel_world_size, |
|
get_sp_group) |
|
from xfuser.core.long_ctx_attention import xFuserLongContextAttention |
|
|
|
from ..modules.model import sinusoidal_embedding_1d |
|
|
|
|
|
def pad_freqs(original_tensor, target_len): |
|
seq_len, s1, s2 = original_tensor.shape |
|
pad_size = target_len - seq_len |
|
padding_tensor = torch.ones( |
|
pad_size, |
|
s1, |
|
s2, |
|
dtype=original_tensor.dtype, |
|
device=original_tensor.device) |
|
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0) |
|
return padded_tensor |
|
|
|
|
|
@amp.autocast(enabled=False) |
|
def rope_apply(x, grid_sizes, freqs): |
|
""" |
|
x: [B, L, N, C]. |
|
grid_sizes: [B, 3]. |
|
freqs: [M, C // 2]. |
|
""" |
|
s, n, c = x.size(1), x.size(2), x.size(3) // 2 |
|
|
|
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) |
|
|
|
|
|
output = [] |
|
for i, (f, h, w) in enumerate(grid_sizes.tolist()): |
|
seq_len = f * h * w |
|
|
|
|
|
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape( |
|
s, n, -1, 2)) |
|
freqs_i = torch.cat([ |
|
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), |
|
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), |
|
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) |
|
], |
|
dim=-1).reshape(seq_len, 1, -1) |
|
|
|
|
|
sp_size = get_sequence_parallel_world_size() |
|
sp_rank = get_sequence_parallel_rank() |
|
freqs_i = pad_freqs(freqs_i, s * sp_size) |
|
s_per_rank = s |
|
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) * |
|
s_per_rank), :, :] |
|
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2) |
|
x_i = torch.cat([x_i, x[i, s:]]) |
|
|
|
|
|
output.append(x_i) |
|
return torch.stack(output).float() |
|
|
|
|
|
def usp_dit_forward( |
|
self, |
|
x, |
|
t, |
|
context, |
|
seq_len, |
|
clip_fea=None, |
|
y=None, |
|
): |
|
""" |
|
x: A list of videos each with shape [C, T, H, W]. |
|
t: [B]. |
|
context: A list of text embeddings each with shape [L, C]. |
|
""" |
|
if self.model_type == 'i2v': |
|
assert clip_fea is not None and y is not None |
|
|
|
device = self.patch_embedding.weight.device |
|
if self.freqs.device != device: |
|
self.freqs = self.freqs.to(device) |
|
|
|
if y is not None: |
|
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] |
|
|
|
|
|
x = [self.patch_embedding(u.unsqueeze(0)) for u in x] |
|
grid_sizes = torch.stack( |
|
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) |
|
x = [u.flatten(2).transpose(1, 2) for u in x] |
|
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) |
|
assert seq_lens.max() <= seq_len |
|
x = torch.cat([ |
|
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) |
|
for u in x |
|
]) |
|
|
|
|
|
with amp.autocast(dtype=torch.float32): |
|
e = self.time_embedding( |
|
sinusoidal_embedding_1d(self.freq_dim, t).float()) |
|
e0 = self.time_projection(e).unflatten(1, (6, self.dim)) |
|
assert e.dtype == torch.float32 and e0.dtype == torch.float32 |
|
|
|
|
|
context_lens = None |
|
context = self.text_embedding( |
|
torch.stack([ |
|
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) |
|
for u in context |
|
])) |
|
|
|
if clip_fea is not None: |
|
context_clip = self.img_emb(clip_fea) |
|
context = torch.concat([context_clip, context], dim=1) |
|
|
|
|
|
kwargs = dict( |
|
e=e0, |
|
seq_lens=seq_lens, |
|
grid_sizes=grid_sizes, |
|
freqs=self.freqs, |
|
context=context, |
|
context_lens=context_lens) |
|
|
|
|
|
x = torch.chunk( |
|
x, get_sequence_parallel_world_size(), |
|
dim=1)[get_sequence_parallel_rank()] |
|
|
|
for block in self.blocks: |
|
x = block(x, **kwargs) |
|
|
|
|
|
x = self.head(x, e) |
|
|
|
|
|
x = get_sp_group().all_gather(x, dim=1) |
|
|
|
|
|
x = self.unpatchify(x, grid_sizes) |
|
return [u.float() for u in x] |
|
|
|
|
|
def usp_attn_forward(self, |
|
x, |
|
seq_lens, |
|
grid_sizes, |
|
freqs, |
|
dtype=torch.bfloat16): |
|
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim |
|
half_dtypes = (torch.float16, torch.bfloat16) |
|
|
|
def half(x): |
|
return x if x.dtype in half_dtypes else x.to(dtype) |
|
|
|
|
|
def qkv_fn(x): |
|
q = self.norm_q(self.q(x)).view(b, s, n, d) |
|
k = self.norm_k(self.k(x)).view(b, s, n, d) |
|
v = self.v(x).view(b, s, n, d) |
|
return q, k, v |
|
|
|
q, k, v = qkv_fn(x) |
|
q = rope_apply(q, grid_sizes, freqs) |
|
k = rope_apply(k, grid_sizes, freqs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = xFuserLongContextAttention()( |
|
None, |
|
query=half(q), |
|
key=half(k), |
|
value=half(v), |
|
window_size=self.window_size) |
|
|
|
|
|
|
|
|
|
|
|
x = x.flatten(2) |
|
x = self.o(x) |
|
return x |
|
|