File size: 10,282 Bytes
3964763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import gc
import logging
import math
import os
import random
import sys
import types
from contextlib import contextmanager
from functools import partial

import torch
import torch.cuda.amp as amp
import torch.distributed as dist
from tqdm import tqdm

from .distributed.fsdp import shard_model
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae import WanVAE
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
                               get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler


class WanT2V:

    def __init__(
        self,
        config,
        checkpoint_dir,
        device_id=0,
        rank=0,
        t5_fsdp=False,
        dit_fsdp=False,
        use_usp=False,
        t5_cpu=False,
    ):
        r"""
        Initializes the Wan text-to-video generation model components.

        Args:
            config (EasyDict):
                Object containing model parameters initialized from config.py
            checkpoint_dir (`str`):
                Path to directory containing model checkpoints
            device_id (`int`,  *optional*, defaults to 0):
                Id of target GPU device
            rank (`int`,  *optional*, defaults to 0):
                Process rank for distributed training
            t5_fsdp (`bool`, *optional*, defaults to False):
                Enable FSDP sharding for T5 model
            dit_fsdp (`bool`, *optional*, defaults to False):
                Enable FSDP sharding for DiT model
            use_usp (`bool`, *optional*, defaults to False):
                Enable distribution strategy of USP.
            t5_cpu (`bool`, *optional*, defaults to False):
                Whether to place T5 model on CPU. Only works without t5_fsdp.
        """
        self.device = torch.device(f"cuda:{device_id}")
        self.config = config
        self.rank = rank
        self.t5_cpu = t5_cpu

        self.num_train_timesteps = config.num_train_timesteps
        self.param_dtype = config.param_dtype

        shard_fn = partial(shard_model, device_id=device_id)
        self.text_encoder = T5EncoderModel(
            text_len=config.text_len,
            dtype=config.t5_dtype,
            device=torch.device('cpu'),
            checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
            shard_fn=shard_fn if t5_fsdp else None)

        self.vae_stride = config.vae_stride
        self.patch_size = config.patch_size
        self.vae = WanVAE(
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
            device=self.device)

        logging.info(f"Creating WanModel from {checkpoint_dir}")
        self.model = WanModel.from_pretrained(checkpoint_dir)
        self.model.eval().requires_grad_(False)

        if use_usp:
            from xfuser.core.distributed import \
                get_sequence_parallel_world_size

            from .distributed.xdit_context_parallel import (usp_attn_forward,
                                                            usp_dit_forward)
            for block in self.model.blocks:
                block.self_attn.forward = types.MethodType(
                    usp_attn_forward, block.self_attn)
            self.model.forward = types.MethodType(usp_dit_forward, self.model)
            self.sp_size = get_sequence_parallel_world_size()
        else:
            self.sp_size = 1

        if dist.is_initialized():
            dist.barrier()
        if dit_fsdp:
            self.model = shard_fn(self.model)
        else:
            self.model.to(self.device)

        self.sample_neg_prompt = config.sample_neg_prompt

    def generate(self,
                 input_prompt,
                 size=(1280, 720),
                 frame_num=81,
                 shift=5.0,
                 sample_solver='unipc',
                 sampling_steps=50,
                 guide_scale=5.0,
                 n_prompt="",
                 seed=-1,
                 offload_model=True):
        r"""
        Generates video frames from text prompt using diffusion process.

        Args:
            input_prompt (`str`):
                Text prompt for content generation
            size (tupele[`int`], *optional*, defaults to (1280,720)):
                Controls video resolution, (width,height).
            frame_num (`int`, *optional*, defaults to 81):
                How many frames to sample from a video. The number should be 4n+1
            shift (`float`, *optional*, defaults to 5.0):
                Noise schedule shift parameter. Affects temporal dynamics
            sample_solver (`str`, *optional*, defaults to 'unipc'):
                Solver used to sample the video.
            sampling_steps (`int`, *optional*, defaults to 40):
                Number of diffusion sampling steps. Higher values improve quality but slow generation
            guide_scale (`float`, *optional*, defaults 5.0):
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
            n_prompt (`str`, *optional*, defaults to ""):
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
            seed (`int`, *optional*, defaults to -1):
                Random seed for noise generation. If -1, use random seed.
            offload_model (`bool`, *optional*, defaults to True):
                If True, offloads models to CPU during generation to save VRAM

        Returns:
            torch.Tensor:
                Generated video frames tensor. Dimensions: (C, N H, W) where:
                - C: Color channels (3 for RGB)
                - N: Number of frames (81)
                - H: Frame height (from size)
                - W: Frame width from size)
        """
        # preprocess
        F = frame_num
        target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
                        size[1] // self.vae_stride[1],
                        size[0] // self.vae_stride[2])

        seq_len = math.ceil((target_shape[2] * target_shape[3]) /
                            (self.patch_size[1] * self.patch_size[2]) *
                            target_shape[1] / self.sp_size) * self.sp_size

        if n_prompt == "":
            n_prompt = self.sample_neg_prompt
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
        seed_g = torch.Generator(device=self.device)
        seed_g.manual_seed(seed)

        if not self.t5_cpu:
            self.text_encoder.model.to(self.device)
            context = self.text_encoder([input_prompt], self.device)
            context_null = self.text_encoder([n_prompt], self.device)
            if offload_model:
                self.text_encoder.model.cpu()
        else:
            context = self.text_encoder([input_prompt], torch.device('cpu'))
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
            context = [t.to(self.device) for t in context]
            context_null = [t.to(self.device) for t in context_null]

        noise = [
            torch.randn(
                target_shape[0],
                target_shape[1],
                target_shape[2],
                target_shape[3],
                dtype=torch.float32,
                device=self.device,
                generator=seed_g)
        ]

        @contextmanager
        def noop_no_sync():
            yield

        no_sync = getattr(self.model, 'no_sync', noop_no_sync)

        # evaluation mode
        with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():

            if sample_solver == 'unipc':
                sample_scheduler = FlowUniPCMultistepScheduler(
                    num_train_timesteps=self.num_train_timesteps,
                    shift=1,
                    use_dynamic_shifting=False)
                sample_scheduler.set_timesteps(
                    sampling_steps, device=self.device, shift=shift)
                timesteps = sample_scheduler.timesteps
            elif sample_solver == 'dpm++':
                sample_scheduler = FlowDPMSolverMultistepScheduler(
                    num_train_timesteps=self.num_train_timesteps,
                    shift=1,
                    use_dynamic_shifting=False)
                sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
                timesteps, _ = retrieve_timesteps(
                    sample_scheduler,
                    device=self.device,
                    sigmas=sampling_sigmas)
            else:
                raise NotImplementedError("Unsupported solver.")

            # sample videos
            latents = noise

            arg_c = {'context': context, 'seq_len': seq_len}
            arg_null = {'context': context_null, 'seq_len': seq_len}

            for _, t in enumerate(tqdm(timesteps)):
                latent_model_input = latents
                timestep = [t]

                timestep = torch.stack(timestep)

                self.model.to(self.device)
                noise_pred_cond = self.model(
                    latent_model_input, t=timestep, **arg_c)[0]
                noise_pred_uncond = self.model(
                    latent_model_input, t=timestep, **arg_null)[0]

                noise_pred = noise_pred_uncond + guide_scale * (
                    noise_pred_cond - noise_pred_uncond)

                temp_x0 = sample_scheduler.step(
                    noise_pred.unsqueeze(0),
                    t,
                    latents[0].unsqueeze(0),
                    return_dict=False,
                    generator=seed_g)[0]
                latents = [temp_x0.squeeze(0)]

            x0 = latents
            if offload_model:
                self.model.cpu()
                torch.cuda.empty_cache()
            if self.rank == 0:
                videos = self.vae.decode(x0)

        del noise, latents
        del sample_scheduler
        if offload_model:
            gc.collect()
            torch.cuda.synchronize()
        if dist.is_initialized():
            dist.barrier()

        return videos[0] if self.rank == 0 else None