2bhavyasodhi7 commited on
Commit
afe22fb
·
verified ·
1 Parent(s): 7e52fbb

Create web_app.py

Browse files
Files changed (1) hide show
  1. web_app.py +71 -0
web_app.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __author__ = "Baishali Dutta"
2
+ __copyright__ = "Copyright (C) 2022 Baishali Dutta"
3
+ __license__ = "Apache License 2.0"
4
+ __version__ = "0.1"
5
+
6
+ # -------------------------------------------------------------------------
7
+ # Import Libraries
8
+ # -------------------------------------------------------------------------
9
+ import pickle
10
+
11
+ import gradio as gr
12
+ from keras.models import load_model
13
+ from keras.preprocessing.sequence import pad_sequences
14
+
15
+ from source.config import *
16
+ from source.data_cleaning import clean_text
17
+
18
+ # -------------------------------------------------------------------------
19
+ # Load Existing Model and Tokenizer
20
+ # -------------------------------------------------------------------------
21
+
22
+ # load the trained model
23
+ rnn_model = load_model(MODEL_LOC)
24
+
25
+ # load the tokenizer
26
+ with open(TOKENIZER_LOC, 'rb') as handle:
27
+ tokenizer = pickle.load(handle)
28
+
29
+
30
+ # -------------------------------------------------------------------------
31
+ # Main Application
32
+ # -------------------------------------------------------------------------
33
+
34
+ def make_prediction(input_comment):
35
+ """
36
+ Predicts the toxicity of the specified comment
37
+ :param input_comment: the comment to be verified
38
+ """
39
+ input_comment = clean_text(input_comment)
40
+ input_comment = input_comment.split(" ")
41
+
42
+ sequences = tokenizer.texts_to_sequences(input_comment)
43
+ sequences = [[item for sublist in sequences for item in sublist]]
44
+
45
+ padded_data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)
46
+ result = rnn_model.predict(padded_data, len(padded_data), verbose=1)
47
+
48
+ return \
49
+ {
50
+ "Toxic": str(result[0][0]),
51
+ "Very Toxic": str(result[0][1]),
52
+ "Obscene": str(result[0][2]),
53
+ "Threat": str(result[0][3]),
54
+ "Insult": str(result[0][4]),
55
+ "Hate": str(result[0][5]),
56
+ "Neutral": str(result[0][6])
57
+ }
58
+
59
+
60
+ comment = gr.inputs.Textbox(lines=17, placeholder="Enter your comment here")
61
+
62
+ title = "Comments Toxicity Detection"
63
+ description = "This application uses a Bidirectional Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) " \
64
+ "model to predict the inappropriateness of a comment"
65
+
66
+ gr.Interface(fn=make_prediction,
67
+ inputs=comment,
68
+ outputs="label",
69
+ title=title,
70
+ description=description) \
71
+ .launch()