babyLLM / app.py
2ba's picture
Update app.py
be990f4 verified
raw
history blame
1.92 kB
import os
from functools import lru_cache
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
# مدل خیلی سریع (۱۳۵M).
REPO_ID = os.getenv("GGUF_REPO_ID", "bartowski/SmolLM2-135M-Instruct-GGUF")
FILENAME = os.getenv("GGUF_FILENAME", "SmolLM2-135M-Instruct-Q4_K_M.gguf")
@lru_cache()
def load_llm():
model_path = hf_hub_download(
repo_id=REPO_ID,
filename=FILENAME,
local_dir=".",
local_dir_use_symlinks=False,
)
llm = Llama(
model_path=model_path,
n_ctx=256,
n_threads=max(2, os.cpu_count() or 2),
n_gpu_layers=0,
n_batch=16,
verbose=True,
)
return llm
SYSTEM_PROMPT = "به فارسی، خیلی کوتاه و روشن جواب بده (حداکثر ۲ جمله)."
def build_prompt(message, history):
prompt = f"<s>[SYSTEM]\n{SYSTEM_PROMPT}\n[/SYSTEM]\n"
for user, assistant in history:
prompt += f"[USER]\n{user}\n[/USER]\n[ASSISTANT]\n{assistant}\n[/ASSISTANT]\n"
prompt += f"[USER]\n{message}\n[/USER]\n[ASSISTANT]\n"
return prompt
def respond(message, history):
llm = load_llm()
prompt = build_prompt(message, history)
stream = llm.create_completion(
prompt=prompt,
max_tokens=60,
temperature=0.5,
top_p=0.9,
stop=["[/ASSISTANT]", "[USER]", "\n[USER]"],
stream=True,
)
partial = ""
for out in stream:
token = out["choices"][0]["text"]
partial += token
yield partial
demo = gr.ChatInterface(
fn=respond,
title="چت‌بات خیلی ساده (CPU رایگان)",
description="SmolLM2-135M (GGUF) با llama.cpp روی CPU. نسخه‌ی مینیمال برای یادگیری.",
)
if __name__ == "__main__":
demo.launch(ssr_mode=False)