import os import logging import asyncio import numpy as np import torch import librosa import soundfile as sf from pydub import AudioSegment from telegram import Update from telegram.ext import ApplicationBuilder, MessageHandler, filters from transformers import pipeline, AutoTokenizer, VitsModel from huggingface_hub import login # ===== تهيئة التوكن ===== login(token=os.getenv("HF_TOKEN")) # ===== إعدادات النظام ===== logging.basicConfig( format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO ) logger = logging.getLogger(__name__) # ===== تحميل النماذج ===== try: # 1. نموذج التعرف على الصوت (ASR) asr_pipeline = pipeline( "automatic-speech-recognition", model="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", token=os.getenv("HF_TOKEN") ) # 2. نموذج توليف الصوت (TTS) tts_tokenizer = AutoTokenizer.from_pretrained( "facebook/mms-tts-ara", token=os.getenv("HF_TOKEN") ) tts_model = VitsModel.from_pretrained( "facebook/mms-tts-ara", token=os.getenv("HF_TOKEN") ) except Exception as e: logger.error(f"فشل تحميل النماذج: {str(e)}") raise # ===== دوال معالجة الصوت ===== def enhance_audio(input_path: str, output_path: str) -> bool: """تحسين جودة الملف الصوتي""" try: audio = AudioSegment.from_wav(input_path) audio = audio.low_pass_filter(3000) audio = audio.high_pass_filter(100) audio = audio.normalize() audio = audio.fade_in(150).fade_out(150) audio.export(output_path, format="wav") return True except Exception as e: logger.error(f"خطأ في تحسين الصوت: {str(e)}") return False async def speech_to_text(audio_path: str) -> str: """تحويل الصوت إلى نص""" try: audio, sr = librosa.load(audio_path, sr=16000) sf.write("temp.wav", audio, sr) result = asr_pipeline("temp.wav") return result["text"] except Exception as e: logger.error(f"فشل التعرف على الصوت: {str(e)}") return "" async def generate_response(text: str) -> str: """توليد رد الذكاء الاصطناعي""" try: chatbot = pipeline( "text-generation", model="aubmindlab/aragpt2-base", token=os.getenv("HF_TOKEN") ) response = chatbot( text, max_length=100, num_return_sequences=1, pad_token_id=50256 ) return response[0]['generated_text'] except Exception as e: logger.error(f"فشل توليد الرد: {str(e)}") return "حدث خطأ في توليد الرد." async def text_to_speech(text: str) -> None: """تحويل النص إلى صوت""" try: inputs = tts_tokenizer(text, return_tensors="pt") with torch.no_grad(): output = tts_model(**inputs) waveform = output.waveform[0].numpy() sf.write("bot_response.wav", waveform, tts_model.config.sampling_rate) except Exception as e: logger.error(f"فشل تحويل النص إلى صوت: {str(e)}") # ===== الدالة الرئيسية ===== async def process_voice(update: Update, context): try: # تحميل الصوت voice_file = await update.message.voice.get_file() await voice_file.download_to_drive("user_voice.ogg") # معالجة الصوت user_text = await speech_to_text("user_voice.ogg") bot_response = await generate_response(user_text) await text_to_speech(bot_response) # إرسال الرد if enhance_audio("bot_response.wav", "bot_response_enhanced.wav"): await update.message.reply_voice("bot_response_enhanced.wav") else: await update.message.reply_voice("bot_response.wav") except Exception as e: logger.error(f"خطأ غير متوقع: {str(e)}") await update.message.reply_text("⚠️ عذرًا، حدث خطأ في المعالجة.") # ===== التشغيل الرئيسي ===== async def main(): application = ApplicationBuilder().token(os.getenv("TELEGRAM_TOKEN")).build() application.add_handler(MessageHandler(filters.VOICE, process_voice)) await application.run_polling() if __name__ == "__main__": asyncio.run(main())