File size: 6,664 Bytes
42a4544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from torch.utils.data import Dataset
from tqdm.auto import tqdm
import os
import librosa
import numpy as np
import torch
import random
from numpy.linalg import norm

from utils.VAD_segments import VAD_chunk
from utils.hparam import hparam as hp

class GujaratiSpeakerVerificationDatasetTest(Dataset):
    def __init__(self, path, shuffle=True, utter_start=0):
        # data path
        self.path = path
        self.file_list = os.listdir(self.path)
        self.shuffle=shuffle
        self.utter_start = utter_start
        self.utter_num = 4
        
    def __len__(self):
        return len(self.file_list)

    def __getitem__(self, idx):
        
        np_file_list = self.file_list
        
        selected_file = np_file_list[idx]               
        
        utters = np.load(os.path.join(self.path, selected_file))
        
                # load utterance spectrogram of selected speaker
        if self.shuffle:
            utter_index = np.random.randint(0, utters.shape[0], self.utter_num)   # select M utterances per speaker
            utterance = utters[utter_index]       
        else:
            utterance = utters[self.utter_start: self.utter_start+self.utter_num] # utterances of a speaker [batch(M), n_mels, frames]

        utterance = utterance[:,:,:160]               # TODO implement variable length batch size

        utterance = torch.tensor(np.transpose(utterance, axes=(0,2,1)))     # transpose [batch, frames, n_mels]
        return utterance

def concat_segs(times, segs):
    concat_seg = []
    seg_concat = segs[0]
    for i in range(0, len(times)-1):
        if times[i][1] == times[i+1][0]:
            seg_concat = np.concatenate((seg_concat, segs[i+1]))
        else:
            concat_seg.append(seg_concat)
            seg_concat = segs[i+1]
    else:
        concat_seg.append(seg_concat)
    return concat_seg


def get_STFTs(segs):
    sr = 16000
    STFT_frames = []
    for seg in segs:
        S = librosa.core.stft(y=seg, n_fft=hp.data.nfft,
                              win_length=int(hp.data.window * sr), hop_length=int(hp.data.hop * sr))
        S = np.abs(S)**2
        mel_basis = librosa.filters.mel(sr=sr, n_fft=hp.data.nfft, n_mels=hp.data.nmels)
        S = np.log10(np.dot(mel_basis, S) + 1e-6)
        for j in range(0, S.shape[1], int(.12/hp.data.hop)):
            if j + 24 < S.shape[1]:
                STFT_frames.append(S[:, j:j+24])
            else:
                break
    return STFT_frames


def get_embedding(file_path, embedder_net, device, n_threshold=-1):
    times, segs = VAD_chunk(2, file_path)
    if not segs:
        print(f'No voice activity detected in {file_path}')
        return None
    concat_seg = concat_segs(times, segs)
    if not concat_seg:
        print(f'No concatenated segments for {file_path}')
        return None
    STFT_frames = get_STFTs(concat_seg)
    if not STFT_frames:
        #print(f'No STFT frames for {file_path}')
        return None
    STFT_frames = np.stack(STFT_frames, axis=2)
    STFT_frames = torch.tensor(np.transpose(STFT_frames, axes=(2, 1, 0)), device=device)

    with torch.no_grad():
        embeddings = embedder_net(STFT_frames)
        embeddings = embeddings[:n_threshold, :]
        
    avg_embedding = torch.mean(embeddings, dim=0, keepdim=True).cpu().numpy()
    return avg_embedding

def get_speaker_embeddings_listdir(embedder_net, device, list_dir, k):
    speaker_embeddings = {}
    for speaker_name in tqdm(list_dir, leave = False):
        speaker_dir = speaker_name
        if os.path.isdir(speaker_dir) and speaker_dir[0] != ".DS_Store":
            speaker_embeddings[speaker_name] = []
            for i in range(10):
                embeddings = []
                audio_files = [os.path.join(speaker_dir, f) for f in os.listdir(speaker_dir) if f.endswith('.wav')]
                random.shuffle(audio_files)
                count = 0
                iter_ = 0
                while(count <= k):
                    file_path = audio_files[iter_]
                    embedding = get_embedding(file_path, embedder_net, device)
                    try:
                        _ = embedding.shape
                        embeddings.append(embedding)
                        count+=1
                        iter_+=1
                    except:
                        iter_+=1
                speaker_embeddings[speaker_name].append(np.mean(embeddings, axis=0))
    return speaker_embeddings

def create_pairs(speaker_embeddings):
    pairs = []
    labels = []
    speakers = list(speaker_embeddings.keys())
    
    for i in range(len(speakers)):
        for j in range(len(speakers)):
            for k1 in range(10):
                for k2 in range(10):
                    emb1 = speaker_embeddings[speakers[i]][k1]
                    emb2 = speaker_embeddings[speakers[j]][k2]
                    pairs.append((emb1, emb2))
                    if i == j and not((emb1 == emb2).all()):
                        labels.append(1)  # Same speaker
                    else:
                        labels.append(0)  # Different speakers
    return pairs, labels

class EmbeddingPairDataset(Dataset):
    def __init__(self, pairs, labels):
        self.pairs = pairs
        self.labels = labels

    def __len__(self):
        return len(self.pairs)

    def __getitem__(self, idx):
        emb1, emb2 = self.pairs[idx]
        label = self.labels[idx]
                
        emb1, emb2 = torch.tensor(emb1, dtype=torch.float32), torch.tensor(emb2, dtype=torch.float32)
                
        concatenated = torch.cat((emb1, emb2), dim=1)
        
        return concatenated.squeeze(), torch.tensor(label, dtype=torch.float32)

    def __len__(self):
        return len(self.labels)

    def __repr__(self):
        return f"{self.__class__.__name__}(length={self.__len__()})"


def cosine_similarity(A, B):
    A = A.flatten().astype(np.float64)
    B = B.flatten().astype(np.float64)
    cosine = np.dot(A,B)/(norm(A)*norm(B))
    return cosine


def create_subset(dataset, num_zeros):
    pairs = dataset.pairs
    labels = dataset.labels
    
    pairs_1 = [pairs[i] for i in range(len(pairs)) if labels[i] == 1]
    labels_1 = [labels[i] for i in range(len(labels)) if labels[i] == 1]
    
    pairs_0 = [pairs[i] for i in range(len(pairs)) if labels[i] == 0]
    labels_0 = [labels[i] for i in range(len(labels)) if labels[i] == 0]
    
    num_zeros = min(num_zeros, len(pairs_0))
    
    pairs_0 = pairs_0[:num_zeros]
    labels_0 = labels_0[:num_zeros]
    
    filtered_pairs = pairs_1 + pairs_0
    filtered_labels = labels_1 + labels_0
    
    return filtered_pairs, filtered_labels