import gradio as gr import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import tempfile import os import shutil import subprocess from typing import Any import PIL import processing_utils # Import or define your custom processing utilities def make_waveform( audio: tuple[int, np.ndarray], bg_color: str = "#f3f4f6", bg_image: str | None = None, fg_alpha: float = 0.75, bars_color: str | tuple[str, str] = ("#fbbf24", "#ea580c"), bar_count: int = 50, bar_width: float = 0.6, animate: bool = False, ) -> str: if isinstance(audio, str): audio_file = audio audio = processing_utils.audio_from_file(audio) else: tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name, format="wav") audio_file = tmp_wav.name if not os.path.isfile(audio_file): raise ValueError("Audio file not found.") ffmpeg = shutil.which("ffmpeg") if not ffmpeg: raise RuntimeError("ffmpeg not found.") duration = round(len(audio[1]) / audio[0], 4) def hex_to_rgb(hex_str): return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)] def get_color_gradient(c1, c2, n): if n < 1: raise ValueError("Must have at least one stop in gradient") c1_rgb = np.array(hex_to_rgb(c1)) / 255 c2_rgb = np.array(hex_to_rgb(c2)) / 255 mix_pcts = [x / (n - 1) for x in range(n)] rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts] return [ "#" + "".join(f"{int(round(val * 255)):02x}" for val in item) for item in rgb_colors ] samples = audio[1] if len(samples.shape) > 1: samples = np.mean(samples, 1) bins_to_pad = bar_count - (len(samples) % bar_count) samples = np.pad(samples, [(0, bins_to_pad)]) samples = np.reshape(samples, (bar_count, -1)) samples = np.abs(samples) samples = np.max(samples, 1) color = ( bars_color if isinstance(bars_color, str) else get_color_gradient(bars_color[0], bars_color[1], bar_count) ) fig = plt.figure(figsize=(5, 1), dpi=200, frameon=False) plt.axis("off") plt.margins(x=0) bar_alpha = fg_alpha if animate else 1.0 barcollection = plt.bar( np.arange(0, bar_count), samples * 2, bottom=(-1 * samples), width=bar_width, color=color, alpha=bar_alpha, ) tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) savefig_kwargs: dict[str, Any] = {"bbox_inches": "tight"} if bg_image is not None: savefig_kwargs["transparent"] = True else: savefig_kwargs["facecolor"] = bg_color plt.savefig(tmp_img.name, **savefig_kwargs) if not animate: waveform_img = PIL.Image.open(tmp_img.name) waveform_img.save(tmp_img.name) else: def _animate(_): for idx, b in enumerate(barcollection): rand_height = np.random.uniform(0.8, 1.2) b.set_height(samples[idx] * rand_height * 2) b.set_y((-rand_height * samples)[idx]) frames = int(duration * 10) anim = FuncAnimation( fig, _animate, repeat=False, blit=False, frames=frames, interval=100, ) anim.save(tmp_img.name, writer="pillow", fps=10, codec="png", savefig_kwargs=savefig_kwargs) output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) ffmpeg_cmd = [ ffmpeg, "-loop", "1", "-i", tmp_img.name, "-i", audio_file, "-vf", f"color=c=#FFFFFF77:s=1000x400[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1", "-t", str(duration), "-y", output_mp4.name, ] subprocess.check_call(ffmpeg_cmd) return output_mp4.name # Gradio app def generate_waveform(audio, bg_color, fg_alpha, bars_color, bar_count, bar_width, animate): try: video_path = make_waveform( audio=(audio[0], np.array(audio[1])), bg_color=bg_color, fg_alpha=fg_alpha, bars_color=bars_color, bar_count=bar_count, bar_width=bar_width, animate=animate ) return video_path except Exception as e: return str(e) with gr.Blocks() as demo: gr.Markdown("### Audio Waveform Generator") with gr.Row(): audio_input = gr.Audio(label="Upload Audio", source="upload", type="numpy") video_output = gr.Video(label="Waveform Video") with gr.Row(): bg_color = gr.ColorPicker(label="Background Color", value="#f3f4f6") fg_alpha = gr.Slider(label="Foreground Opacity", minimum=0.1, maximum=1.0, value=0.75) bar_count = gr.Slider(label="Number of Bars", minimum=10, maximum=100, step=1, value=50) bar_width = gr.Slider(label="Bar Width", minimum=0.1, maximum=1.0, value=0.6) bars_color = gr.ColorPicker(label="Bars Color", value="#fbbf24") animate = gr.Checkbox(label="Animate", value=False) generate_button = gr.Button("Generate Waveform") generate_button.click( generate_waveform, inputs=[audio_input, bg_color, fg_alpha, bars_color, bar_count, bar_width, animate], outputs=video_output ) demo.launch(debug = True)