Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib.animation import FuncAnimation | |
import tempfile | |
import os | |
import shutil | |
import subprocess | |
from typing import Any | |
import PIL | |
import processing_utils # Import or define your custom processing utilities | |
def make_waveform( | |
audio: tuple[int, np.ndarray], | |
bg_color: str = "#f3f4f6", | |
bg_image: str | None = None, | |
fg_alpha: float = 0.75, | |
bars_color: str | tuple[str, str] = ("#fbbf24", "#ea580c"), | |
bar_count: int = 50, | |
bar_width: float = 0.6, | |
animate: bool = False, | |
) -> str: | |
if isinstance(audio, str): | |
audio_file = audio | |
audio = processing_utils.audio_from_file(audio) | |
else: | |
tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False) | |
processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name, format="wav") | |
audio_file = tmp_wav.name | |
if not os.path.isfile(audio_file): | |
raise ValueError("Audio file not found.") | |
ffmpeg = shutil.which("ffmpeg") | |
if not ffmpeg: | |
raise RuntimeError("ffmpeg not found.") | |
duration = round(len(audio[1]) / audio[0], 4) | |
def hex_to_rgb(hex_str): | |
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)] | |
def get_color_gradient(c1, c2, n): | |
if n < 1: | |
raise ValueError("Must have at least one stop in gradient") | |
c1_rgb = np.array(hex_to_rgb(c1)) / 255 | |
c2_rgb = np.array(hex_to_rgb(c2)) / 255 | |
mix_pcts = [x / (n - 1) for x in range(n)] | |
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts] | |
return [ | |
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item) | |
for item in rgb_colors | |
] | |
samples = audio[1] | |
if len(samples.shape) > 1: | |
samples = np.mean(samples, 1) | |
bins_to_pad = bar_count - (len(samples) % bar_count) | |
samples = np.pad(samples, [(0, bins_to_pad)]) | |
samples = np.reshape(samples, (bar_count, -1)) | |
samples = np.abs(samples) | |
samples = np.max(samples, 1) | |
color = ( | |
bars_color | |
if isinstance(bars_color, str) | |
else get_color_gradient(bars_color[0], bars_color[1], bar_count) | |
) | |
fig = plt.figure(figsize=(5, 1), dpi=200, frameon=False) | |
plt.axis("off") | |
plt.margins(x=0) | |
bar_alpha = fg_alpha if animate else 1.0 | |
barcollection = plt.bar( | |
np.arange(0, bar_count), | |
samples * 2, | |
bottom=(-1 * samples), | |
width=bar_width, | |
color=color, | |
alpha=bar_alpha, | |
) | |
tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
savefig_kwargs: dict[str, Any] = {"bbox_inches": "tight"} | |
if bg_image is not None: | |
savefig_kwargs["transparent"] = True | |
else: | |
savefig_kwargs["facecolor"] = bg_color | |
plt.savefig(tmp_img.name, **savefig_kwargs) | |
if not animate: | |
waveform_img = PIL.Image.open(tmp_img.name) | |
waveform_img.save(tmp_img.name) | |
else: | |
def _animate(_): | |
for idx, b in enumerate(barcollection): | |
rand_height = np.random.uniform(0.8, 1.2) | |
b.set_height(samples[idx] * rand_height * 2) | |
b.set_y((-rand_height * samples)[idx]) | |
frames = int(duration * 10) | |
anim = FuncAnimation( | |
fig, | |
_animate, | |
repeat=False, | |
blit=False, | |
frames=frames, | |
interval=100, | |
) | |
anim.save(tmp_img.name, writer="pillow", fps=10, codec="png", savefig_kwargs=savefig_kwargs) | |
output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) | |
ffmpeg_cmd = [ | |
ffmpeg, | |
"-loop", | |
"1", | |
"-i", | |
tmp_img.name, | |
"-i", | |
audio_file, | |
"-vf", | |
f"color=c=#FFFFFF77:s=1000x400[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1", | |
"-t", | |
str(duration), | |
"-y", | |
output_mp4.name, | |
] | |
subprocess.check_call(ffmpeg_cmd) | |
return output_mp4.name | |
# Gradio app | |
def generate_waveform(audio, bg_color, fg_alpha, bars_color, bar_count, bar_width, animate): | |
try: | |
video_path = make_waveform( | |
audio=(audio[0], np.array(audio[1])), | |
bg_color=bg_color, | |
fg_alpha=fg_alpha, | |
bars_color=bars_color, | |
bar_count=bar_count, | |
bar_width=bar_width, | |
animate=animate | |
) | |
return video_path | |
except Exception as e: | |
return str(e) | |
with gr.Blocks() as demo: | |
gr.Markdown("### Audio Waveform Generator") | |
with gr.Row(): | |
audio_input = gr.Audio(label="Upload Audio", source="upload", type="numpy") | |
video_output = gr.Video(label="Waveform Video") | |
with gr.Row(): | |
bg_color = gr.ColorPicker(label="Background Color", value="#f3f4f6") | |
fg_alpha = gr.Slider(label="Foreground Opacity", minimum=0.1, maximum=1.0, value=0.75) | |
bar_count = gr.Slider(label="Number of Bars", minimum=10, maximum=100, step=1, value=50) | |
bar_width = gr.Slider(label="Bar Width", minimum=0.1, maximum=1.0, value=0.6) | |
bars_color = gr.ColorPicker(label="Bars Color", value="#fbbf24") | |
animate = gr.Checkbox(label="Animate", value=False) | |
generate_button = gr.Button("Generate Waveform") | |
generate_button.click( | |
generate_waveform, | |
inputs=[audio_input, bg_color, fg_alpha, bars_color, bar_count, bar_width, animate], | |
outputs=video_output | |
) | |
demo.launch(debug = True) | |