make_waveform / app.py
1littlecoder's picture
Create app.py
e39102f verified
raw
history blame
5.52 kB
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
import tempfile
import os
import shutil
import subprocess
from typing import Any
import PIL
import processing_utils # Import or define your custom processing utilities
def make_waveform(
audio: tuple[int, np.ndarray],
bg_color: str = "#f3f4f6",
bg_image: str | None = None,
fg_alpha: float = 0.75,
bars_color: str | tuple[str, str] = ("#fbbf24", "#ea580c"),
bar_count: int = 50,
bar_width: float = 0.6,
animate: bool = False,
) -> str:
if isinstance(audio, str):
audio_file = audio
audio = processing_utils.audio_from_file(audio)
else:
tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name, format="wav")
audio_file = tmp_wav.name
if not os.path.isfile(audio_file):
raise ValueError("Audio file not found.")
ffmpeg = shutil.which("ffmpeg")
if not ffmpeg:
raise RuntimeError("ffmpeg not found.")
duration = round(len(audio[1]) / audio[0], 4)
def hex_to_rgb(hex_str):
return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)]
def get_color_gradient(c1, c2, n):
if n < 1:
raise ValueError("Must have at least one stop in gradient")
c1_rgb = np.array(hex_to_rgb(c1)) / 255
c2_rgb = np.array(hex_to_rgb(c2)) / 255
mix_pcts = [x / (n - 1) for x in range(n)]
rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts]
return [
"#" + "".join(f"{int(round(val * 255)):02x}" for val in item)
for item in rgb_colors
]
samples = audio[1]
if len(samples.shape) > 1:
samples = np.mean(samples, 1)
bins_to_pad = bar_count - (len(samples) % bar_count)
samples = np.pad(samples, [(0, bins_to_pad)])
samples = np.reshape(samples, (bar_count, -1))
samples = np.abs(samples)
samples = np.max(samples, 1)
color = (
bars_color
if isinstance(bars_color, str)
else get_color_gradient(bars_color[0], bars_color[1], bar_count)
)
fig = plt.figure(figsize=(5, 1), dpi=200, frameon=False)
plt.axis("off")
plt.margins(x=0)
bar_alpha = fg_alpha if animate else 1.0
barcollection = plt.bar(
np.arange(0, bar_count),
samples * 2,
bottom=(-1 * samples),
width=bar_width,
color=color,
alpha=bar_alpha,
)
tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
savefig_kwargs: dict[str, Any] = {"bbox_inches": "tight"}
if bg_image is not None:
savefig_kwargs["transparent"] = True
else:
savefig_kwargs["facecolor"] = bg_color
plt.savefig(tmp_img.name, **savefig_kwargs)
if not animate:
waveform_img = PIL.Image.open(tmp_img.name)
waveform_img.save(tmp_img.name)
else:
def _animate(_):
for idx, b in enumerate(barcollection):
rand_height = np.random.uniform(0.8, 1.2)
b.set_height(samples[idx] * rand_height * 2)
b.set_y((-rand_height * samples)[idx])
frames = int(duration * 10)
anim = FuncAnimation(
fig,
_animate,
repeat=False,
blit=False,
frames=frames,
interval=100,
)
anim.save(tmp_img.name, writer="pillow", fps=10, codec="png", savefig_kwargs=savefig_kwargs)
output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
ffmpeg_cmd = [
ffmpeg,
"-loop",
"1",
"-i",
tmp_img.name,
"-i",
audio_file,
"-vf",
f"color=c=#FFFFFF77:s=1000x400[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1",
"-t",
str(duration),
"-y",
output_mp4.name,
]
subprocess.check_call(ffmpeg_cmd)
return output_mp4.name
# Gradio app
def generate_waveform(audio, bg_color, fg_alpha, bars_color, bar_count, bar_width, animate):
try:
video_path = make_waveform(
audio=(audio[0], np.array(audio[1])),
bg_color=bg_color,
fg_alpha=fg_alpha,
bars_color=bars_color,
bar_count=bar_count,
bar_width=bar_width,
animate=animate
)
return video_path
except Exception as e:
return str(e)
with gr.Blocks() as demo:
gr.Markdown("### Audio Waveform Generator")
with gr.Row():
audio_input = gr.Audio(label="Upload Audio", source="upload", type="numpy")
video_output = gr.Video(label="Waveform Video")
with gr.Row():
bg_color = gr.ColorPicker(label="Background Color", value="#f3f4f6")
fg_alpha = gr.Slider(label="Foreground Opacity", minimum=0.1, maximum=1.0, value=0.75)
bar_count = gr.Slider(label="Number of Bars", minimum=10, maximum=100, step=1, value=50)
bar_width = gr.Slider(label="Bar Width", minimum=0.1, maximum=1.0, value=0.6)
bars_color = gr.ColorPicker(label="Bars Color", value="#fbbf24")
animate = gr.Checkbox(label="Animate", value=False)
generate_button = gr.Button("Generate Waveform")
generate_button.click(
generate_waveform,
inputs=[audio_input, bg_color, fg_alpha, bars_color, bar_count, bar_width, animate],
outputs=video_output
)
demo.launch(debug = True)